42 research outputs found

    Effect of halloysite nanotubes filler on polydopamine properties

    Get PDF
    Hypothesis: Polydopamine (PDA) is widely used as hydrophilic coating for several applications. However, most of the methods studied to improve or manipulate PDA properties are multistep and time-consuming, and there is a need for versatile strategies aimed at controlling and modifying the properties of PDA. Experiments: PDA-halloysite nanocomposites were produced under different oxidation conditions in alkaline and acidic media and were characterized by UV–visible and attenuated total refraction- Fourier Transform Infrared spectroscopies, thermogravimetric analysis, porosimetry, scanning electron microscopy, X-ray diffraction and contact angle measurements against the reference PDA polymer. Findings: Inclusion of the inorganic halloysite nanofiller in the PDA component was found to affect the thermal properties of the nanocomposite as well as its structure, depending on the experimental conditions. The ability of the nanocomposites to adsorb organic dyes as possible membrane coatings for environmental remediation was also investigated by different models, suggesting promising applications as adsorbents for the treatment of wastewaters

    MODIFICAZIONI COVALENTI DI NANOTUBI DI ALLOSITE PER APPLICAZIONE NEL DRUG DELIVERY

    Get PDF
    Nell'ampio scenario dei nanomateriali, i sistemi nanotubolari godono di un consolidato e crescente interesse sia nell'ambito scientifico che industriale. Fra la miriade di sistemi tubolari, recentemente i nanotubi allosite (HNT) hanno attirato l’attenzione della comunità scientifica.1 Grazie alla presenza di una cavità vuota, gli HNT trovano, principalmente, applicazione come nanocontainer per il rilascio controllato di composti chimici, in particolare, farmaci. L’introduzione di modificazioni covalenti su entrambe le superfici permette di modulare le proprietà dell’allosite, aumentando così i suoi campi di applicazione. In questa comunicazione verranno presentati recenti risultati ottenuti mediante la funzionalizzazione covalente della superficie esterna degli HNT con particolari molecole target e la relativa introduzione, nella cavità, di molecole con importanti proprietà biologiche per applicazioni nel campo del drug delivery

    Anti-angiogenic and antioxidant effects of axitinib in human retinal endothelial cells: implications in diabetic retinopathy

    Get PDF
    Diabetic retinopathy is a secondary microvascular complication of diabetes mellitus. This disease progresses from two stages, non-proliferative and proliferative diabetic retinopathy, the latter characterized by retinal abnormal angiogenesis. Pharmacological management of retinal angiogenesis employs expensive and invasive intravitreal injections of biologic drugs (anti-vascular endothelial growth factor agents). To search small molecules able to act as anti-angiogenic agents, we focused our study on axitinib, which is a tyrosine kinase inhibitor and represents the second line treatment for renal cell carcinoma. Axitinib is an inhibitor of vascular endothelial growth factor receptors, and among the others tyrosine kinase inhibitors (sunitinib and sorafenib) is the most selective towards vascular endothelial growth factor receptors 1 and 2. Besides the well-known anti-angiogenic and immune-modulatory functions, we hereby explored the polypharmacological profile of axitinib, through a bioinformatic/molecular modeling approach and in vitro models of diabetic retinopathy. We showed the anti-angiogenic activity of axitinib in two different in vitro models of diabetic retinopathy, by challenging retinal endothelial cells with high glucose concentration (fluctuating and non-fluctuating). We found that axitinib, along with inhibition of vascular endothelial growth factor receptors 1 (1.82 ± 0.10; 0.54 ± 0.13, phosphorylated protein levels in fluctuating high glucose vs. axitinib 1 µM, respectively) and vascular endothelial growth factor receptors 2 (2.38 ± 0.21; 0.98 ± 0.20, phosphorylated protein levels in fluctuating high glucose vs. axitinib 1 µM, respectively), was able to significantly reduce (p < 0.05) the expression of Nrf2 (1.43 ± 0.04; 0.85 ± 0.01, protein levels in fluctuating high glucose vs. axitinib 1 µM, respectively) in retinal endothelial cells exposed to high glucose, through predicted Keap1 interaction and activation of melanocortin receptor 1. Furthermore, axitinib treatment significantly (p < 0.05) decreased reactive oxygen species production (0.90 ± 0.10; 0.44 ± 0.06, fluorescence units in high glucose vs. axitinib 1 µM, respectively) and inhibited ERK pathway (1.64 ± 0.09; 0.73 ± 0.06, phosphorylated protein levels in fluctuating high glucose vs. axitinib 1 µM, respectively) in HRECs exposed to high glucose. The obtained results about the emerging polypharmacological profile support the hypothesis that axitinib could be a valid candidate to handle diabetic retinopathy, with ancillary mechanisms of action

    Ocular pharmacological and biochemical profiles of 6-thioguanine: a drug repurposing study

    Get PDF
    Introduction:The purine analog 6-thioguanine (6TG), an old drug approved in the 60s to treat acute myeloid leukemia (AML), was tested in the diabetic retinopathy (DR) experimental in vivo setting along with a molecular modeling approach.Methods:A computational analysis was performed to investigate the interaction of 6TG with MC1R and MC5R. This was confirmed in human umbilical vein endothelial cells (HUVECs) exposed to high glucose (25 mM) for 24 h. Cell viability in HUVECs exposed to high glucose and treated with 6TG (0.05–0.5–5 µM) was performed. To assess tube formation, HUVECs were treated for 24 h with 6TG 5 µM and AGRP (0.5–1–5 µM) or PG20N (0.5–1–5–10 µM), which are MC1R and MC5R antagonists, respectively. For the in vivo DR setting, diabetes was induced in C57BL/6J mice through a single streptozotocin (STZ) injection. After 2, 6, and 10 weeks, diabetic and control mice received 6TG intravitreally (0.5–1–2.5 mg/kg) alone or in combination with AGRP or PG20N. Fluorescein angiography (FA) was performed after 4 and 14 weeks after the onset of diabetes. After 14 weeks, mice were euthanized, and immunohistochemical analysis was performed to assess retinal levels of CD34, a marker of endothelial progenitor cell formation during neo-angiogenesis.Results:The computational analysis evidenced a more stable binding of 6TG binding at MC5R than MC1R. This was confirmed by the tube formation assay in HUVECs exposed to high glucose. Indeed, the anti-angiogenic activity of 6TG was eradicated by a higher dose of the MC5R antagonist PG20N (10 µM) compared to the MC1R antagonist AGRP (5 µM). The retinal anti-angiogenic effect of 6TG was evident also in diabetic mice, showing a reduction in retinal vascular alterations by FA analysis. This effect was not observed in diabetic mice receiving 6TG in combination with AGRP or PG20N. Accordingly, retinal CD34 staining was reduced in diabetic mice treated with 6TG. Conversely, it was not decreased in diabetic mice receiving 6TG combined with AGRP or PG20N.Conclusion:6TG evidenced a marked anti-angiogenic activity in HUVECs exposed to high glucose and in mice with DR. This seems to be mediated by MC1R and MC5R retinal receptors

    Retinal Protection and Distribution of Curcumin in Vitro and in Vivo

    Get PDF
    Diabetic retinopathy (DR), a secondary complication of diabetes, is a leading cause of irreversible blindness accounting for 5% of world blindness cases in working age. Oxidative stress and inflammation are considered causes of DR. Curcumin, a product with anti-oxidant and anti-inflammatory properties, is currently proposed as oral supplementation therapy for retinal degenerative diseases, including DR. In this study we predicted the pharmacodynamic profile of curcumin through an in silico approach. Furthermore, we tested the anti-oxidant and anti-inflammatory activity of curcumin on human retinal pigmented epithelial cells exposed to oxidative stress, human retinal endothelial and human retinal pericytes (HRPCs) cultured with high glucose. Because currently marketed curcumin nutraceutical products have not been so far evaluated for their ocular bioavailability; we assessed retinal distribution of curcumin, following oral administration, in rabbit eye. Curcumin (10 μM) decreased significantly (p < 0.01) ROS concentration and TNF-α release in retinal pigmented epithelial cells and retinal endothelial cells, respectively. The same curcumin concentration significantly (p < 0.01) protected retinal pericytes from high glucose damage as assessed by cell viability and LDH release. Among the tested formulations, only that containing a hydrophilic carrier provided therapeutic levels of curcumin in rabbit retina. In conclusion, our data suggest that curcumin, when properly formulated, may be of value in clinical practice to manage retinal diseases

    Dicationic organic salts: gelators for ionic liquids

    No full text
    Diimidazolium and dipyrrolidinium organic salts were tested for their ability to gel both organic solvents and ionic liquids. Organic salts containing 1-(1-imidazolylmethyl)-3,5-di-(3′-octylimidazolylmethyl)-benzene and 1-(N-pyrrolidylmethyl)-3,5-di-(N,N-octylpyrrolidylmethyl)-benzene cations were used. In addition to the simple bromide anion, also dianions having a naphthalene core such as 1,5- and 2,6-naphthalenedisulfonate and 2,6-naphthalenedicarboxylate were taken into account. Gelation tests demonstrated that organic salts used were able to harden ionic liquids. The materials obtained were investigated for their thermal stability and also for electric conductivity properties using micro-DSC and dielectric spectroscopy. Furthermore, the opacity of some gel phases was monitored using UV-vis measurements. To obtain information about the gelation mechanism, gel phase formation was studied as a function of time by means of resonance light scattering investigation. Finally, the ability of materials to respond to external stimuli such as magnetic stirring or ultrasound irradiation was also analyzed. Data collected show that different relationships exist among the gelator and the ionic liquid structure, determining the properties of materials and their possible applications
    corecore