17 research outputs found

    A review of thresholding strategies applied to human chromosome segmentation

    No full text
    Karyotype analysis is a widespread procedure in cytogenetics to assess the presence of genetic defects by the visualization of the structure of chromosomes. The procedure is lengthy and repetitive and an effective automatic analysis would greatly help the cytogeneticist routine work. Still, automatic segmentation and the full disentangling of chromosomes are open issues. The first step in every automatic procedure is the thresholding step, which detect blobs that represent either single chromosomes or clusters of chromosomes. The better the thresholding step, the easier is the subsequent disentanglement of chromosome clusters into single entities. We implemented eleven thresholding methods, i.e. the ones that appear in the literature as the best performers, and compared their performance in segmenting chromosomes and chromosome clusters in cytogenetic Q-band images. The images are affected by the presence of hyper- or hypo-fluorescent regions and by a contrast variability between the stained chromosomes and the background. A thorough analysis of the results highlights that, although every single algorithm shows peculiar strong/weak points, Adaptive Threshold and Region Based Level Set have the overall best performance. In order to provide the scientific community with a public dataset, the data and manual segmentation used in this paper are available for public download at http://bioimlab.dei.unipd.it

    Early origins of adult disease: Low birth weight and vascular remodeling

    No full text
    Cardiovascular diseases (CVD) and diabetes still represent the main cause of mortality and morbidity in the industrialized world. Low birth weight (LBW), caused by intrauterine growth restriction (IUGR), was recently known to be associated with increased rates of CVD and non-insulin dependent diabetes in adult life (Barker's hypothesis). Well-established animal models have shown that environmentally induced IUGR (diet, diabetes, hormone exposure, hypoxia) increases the risk of a variety of diseases later in life with similar phenotypic outcomes in target organs. This suggests that a range of disruptions in fetal and postnatal growth may act through common pathways to regulate the developmental programming and produce a similar adult phenotype. The identification of all involved signaling cascades, underlying the physiopathology of these damages in IUGR fetuses, with their influence on adult health, is still far from satisfactory. The endothelium may be important for long-term remodeling and in the control of elastic properties of the arterial wall. Several clinical and experimental studies showed that IUGR fetuses, neonates, children and adolescents present signs of endothelial dysfunction, valuated by aorta intima media thickness, carotid intima media thickness and stiffness, central pulse wave velocity, brachial artery flow-mediated dilation, laser Doppler skin perfusion and by the measure of arterial blood pressure. In utero identification of high risk fetuses and long-term follow-up are necessary to assess the effects of interventions aimed at preventing pregnancy-induced hypertension, reducing maternal obesity, encouraging a healthy life style and preventing childhood obesity on adult blood pressure and cardiovascular disease in later life

    Grade and location of power Doppler are predictive of damage progression in rheumatoid arthritis patients in clinical remission by anti-tumour necrosis factor \u3b1

    No full text
    Objectives.: To investigate power Doppler (PD) signal, grade and location and their association with radiographic progression in RA patients in remission. Methods: . A prospective observational study was conducted in 125 consecutive RA patients in stable 28-joint DAS (DAS28) remission (\u2a7e6 months) achieved on anti-TNF-\u3b1. At baseline, patients in stable remission underwent radiographic and US examination of the wrists and MCP, PIP and MTP joints. Semi-quantitative PD scoring (0-3) was recorded. We scored PD according to two locations: capsular or within synovial tissue without bone contact (location 1) and with bone contact or penetrating bone cortex (location 2). Radiographic progression was evaluated at the 1 year follow-up and defined as a change in van der Heijde-modified total Sharp score >0. Risk ratios (RRs) of radiographic progression according to presence, grade and location of PD were calculated. Results: . Four patients were excluded because of missing data. At baseline, 59/121 (48.7%) patients had a PD signal in one or more joints. PD location 2 was found in 74.6% patients (44/59). At the 1 year follow-up, 17/121 patients experienced radiographic progression: all had PD signal in one or more joints at baseline (RR 2.47, P < 0.0001). Radiographic progression was associated with the following baseline US features: PD grade 2 (RR 4.58, P < 0.01), PD grade 3 (RR 3.49, P < 0.05), total PD score \u2a7e2 (sum of all PD scores) (RR 3.19, P < 0.0001) and PD location 2 (RR 3.49, P < 0.0001). Conclusion: . Higher PD grades and PD in contact with/or penetrating bone are associated with radiographic progression in patients in DAS28 remission

    Compartmentalized Signaling in Aging and Neurodegeneration

    No full text
    The cyclic AMP (cAMP) signalling cascade is necessary for cell homeostasis and plays important roles in many processes. This is particularly relevant during ageing and age-related diseases, where drastic changes, generally decreases, in cAMP levels have been associated with the progressive decline in overall cell function and, eventually, the loss of cellular integrity. The functional relevance of reduced cAMP is clearly supported by the finding that increases in cAMP levels can reverse some of the effects of ageing. Nevertheless, despite these observations, the molecular mechanisms underlying the dysregulation of cAMP signalling in ageing are not well understood. Compartmentalization is widely accepted as the modality through which cAMP achieves its functional specificity; therefore, it is important to understand whether and how this mechanism is affected during ageing and to define which is its contribution to this process. Several animal models demonstrate the importance of specific cAMP signalling components in ageing, however, how age-related changes in each of these elements affect the compartmentalization of the cAMP pathway is largely unknown. In this review, we explore the connection of single components of the cAMP signalling cascade to ageing and age-related diseases whilst elaborating the literature in the context of cAMP signalling compartmentalization

    A Novel Loss of Function Melanocortin-4-Receptor Mutation (MC4R-F313Sfs*29) in Morbid Obesity

    No full text
    CONTEXT: Melanocortin receptor-4 (MC4R) gene mutations are associated with early-onset severe obesity and the identification of potential pathological variants is crucial for the clinical management of patients with obesity.OBJECTIVE: To explore whether and how a novel heterozygous MC4R variant (MC4R-F313Sfs*29), identified in a young boy (BMI 38.8kg/m 2) during a mutation analysis conducted in a cohort of patients with obesity, plays a determinant pathophysiological role in the obesity development.DESIGN SETTING AND PATIENTS: The genetic screening was carried out in a total of 209 unrelated patients with obesity (BMI\u202f 65\u202f35\u202fkg/m 2). Structural and functional characterization of the F313Sfs*29-mutated MC4R was performed using computational approaches and in vitro, using HEK293 cells transfected with genetically-encoded biosensors for cAMP and Ca 2+.RESULTS: The F313Sfs*29 was the only variant identified. In vitro experiments showed that HEK293 cells transfected with the mutated form of MC4R did not increase intracellular cAMP or Ca 2+ levels after the stimulation with a specific agonist in comparison with HEK293 cells transfected with the wild type form of MC4R ( 06R/R0= -90%\ub18%; p<0,001). In silico modelling showed that the F313Sfs*29 mutation causes a major reorganization cytosolic domain of the MC4R, thus reducing the affinity of the putative GalphaS binding site.CONCLUSIONS: The newly discovered F313Sfs*29 variant of MC4R may be involved in the impairment of alpha-MSH-induced cAMP and Ca 2+ signaling, blunting intracellular G protein mediated signal transduction. This alteration might have led to the dysregulation of satiety signaling, resulting in hyperphagia and early onset of obesity

    Effects of mud-bath therapy in psoriatic arthritis patients treated with TNF inhibitors. Clinical evaluation and assessment of synovial inflammation by contrast-enhanced ultrasound (CEUS).

    No full text
    OBJECTIVES: Despite the efficacy of TNF inhibitors, most patients with psoriatic arthritis maintain a residual synovial inflammation. The main aim of the study was to evaluate the effects of mud-bath therapy on clinical picture of PsA patients treated with TNF inhibitors. The secondary outcome was to assess synovial inflammation in hand joints detected by contrast-enhanced ultrasound. Other aims were to verify the risk of arthritis flare and to evaluate the effects of spa treatment on functional ability and on quality of life. METHODS: Thirty-six patients with psoriatic arthritis, treated in the last 6 months with TNF inhibitors, were enrolled. After 1:1 randomisation, 18 patients (group A) underwent mud-bath therapy (12 mudpacks and 12 thermal baths), maintaining treatment with TNF inhibitors; 18 patients (group B) continued pharmacological therapy alone. CRP, PASI, DAS28, swollen and tender joint count, VAS pain, HAQ and SF-36 were evaluated at baseline (T0) and after 45 days (T1). Synovial inflammation detected by contrast-enhanced ultrasound, analysed by a software system, was also assessed. RESULTS: A significant improvement in PASI (P<0.005), DAS28 (P<0.05), swollen joint count and tender joint count (P<0.001), and HAQ (P<0.001) between T0 and T1 was observed in group A. No patient underwent a flare-up of arthritis. Ultrasound videos demonstrated a significant appearance delay (P<0.05) and faster washout (P<0.02) of contrast dye in group A patients with respect to group B. CONCLUSIONS: These data suggest a decrease of residual synovial inflammation and a beneficial clinical effect of spa therapy in psoriatic arthritis patients treated with TNF inhibitors

    Overexpression of the olive acyl carrier protein gene (OeACP1) produces alterations in fatty acid composition of tobacco leaves.

    No full text
    International audienceTaking into account that fatty acid (FA) biosynthesis plays a crucial role in lipid accumulation in olive (Olea europaea L.) mesocarp, we investigated the effect of olive acyl carrier protein (ACP) on FA composition by overexpressing an olive ACP cDNA in tobacco plants. The OeACP1.1A cDNA was inserted in the nucleus or in the chloroplast DNA of different tobacco plants, resulting in extensive transcription of the transgenes. The transplastomic plants accumulated lower olive ACP levels in comparison to nuclear-transformed plants. Moreover, the phenotype of the former plants was characterized by pale green/white cotyledons with abnormal chloroplasts, delayed germination and reduced growth. We suggest that the transplastomic phenotype was likely caused by inefficient olive ACP mRNA translation in chloroplast stroma. Conversely, total lipids from leaves of nuclear transformants expressing high olive ACP levels showed a significant increase in oleic acid (18:1) and linolenic acid (18:3), and a concomitant significant reduction of hexadecadienoic acid (16:2) and hexadecatrienoic acid (16:3). This implies that in leaves of tobacco transformants, as likely in the mesocarp of olive fruit, olive ACP not only plays a general role in FA synthesis, but seems to be specifically involved in chain length regulation forwarding the elongation to C18 FAs and the subsequent desaturation to 18:1 and 18:3

    Phosphatases control PKA-dependent functional microdomains at the outer mitochondrial membrane

    Get PDF
    Evidence supporting the heterogeneity in cAMP and PKA signaling is rapidly accumulating and has been largely attributed to the localization or activity of adenylate cyclases, phosphodiesterases, and A-kinase–anchoring proteins in different cellular subcompartments. However, little attention has been paid to the possibility that, despite homogeneous cAMP levels, a major heterogeneity in cAMP/PKA signaling could be generated by the spatial distribution of the final terminators of this cascade, i.e., the phosphatases. Using FRET-based sensors to monitor cAMP and PKA-dependent phosphorylation in the cytosol and outer mitochondrial membrane (OMM) of primary rat cardiomyocytes, we demonstrate that comparable cAMP increases in these two compartments evoke higher levels of PKA-dependent phosphorylation in the OMM. This difference is most evident for small, physiological increases of cAMP levels and with both OMM-located probes and endogenous OMM proteins. We demonstrate that this disparity depends on differences in the rates of phosphatase-dependent dephosphorylation of PKA targets in the two compartments. Furthermore, we show that the activity of soluble phosphatases attenuates PKA-driven activation of the cAMP response element-binding protein while concurrently enhancing PKA-dependent mitochondrial elongation. We conclude that phosphatases can sculpt functionally distinct cAMP/PKA domains even in the absence of gradients or microdomains of this messenger. We present a model that accounts for these unexpected results in which the degree of PKA-dependent phosphorylation is dictated by both the subcellular distribution of the phosphatases and the different accessibility of membrane-bound and soluble phosphorylated substrates to the cytosolic enzymes

    Quantitative imaging by pixel-based contrast-enhanced ultrasound reveals a linear relationship between synovial vascular perfusion and the recruitment of pathogenic IL-17A-F+IL-23+ CD161+ CD4+ T helper cells in psoriatic arthritis joints

    No full text
    To develop quantitative imaging biomarkers of synovial tissue perfusion by pixel-based contrast-enhanced ultrasound (CEUS), we studied the relationship between CEUS synovial vascular perfusion and the frequencies of pathogenic T helper (Th)-17 cells in psoriatic arthritis (PsA) joints. Eight consecutive patients with PsA were enrolled in this study. Gray scale CEUS evaluation was performed on the same joint immediately after joint aspiration, by automatic assessment perfusion data, using a new quantification approach of pixel-based analysis and the gamma-variate model. The set of perfusional parameters considered by the time intensity curve includes the maximum value (peak) of the signal intensity curve, the blood volume index or area under the curve, (BVI, AUC) and the contrast mean transit time (MTT). The direct ex vivo analysis of the frequencies of SF IL17A-F+CD161+IL23+ CD4+ T cells subsets were quantified by fluorescence-activated cell sorter (FACS). In cross-sectional analyses, when tested for multiple comparison setting, a false discovery rate at 10%, a common pattern of correlations between CEUS Peak, AUC (BVI) and MTT parameters with the IL17A-F+IL23+ - IL17A-F+CD161+ - and IL17A-F+CD161+IL23+ CD4+ T cells subsets, as well as lack of correlation between both peak and AUC values and both CD4+T and CD4+IL23+ T cells, was observed. The pixel-based CEUS assessment is a truly measure synovial inflammation, as a useful tool to develop quantitative imaging biomarker for monitoring target therapeutics in PsA
    corecore