3,505 research outputs found

    Isotope-Based Early-Warning Model for Monitoring Groundwater–Leachate Contamination Phenomena: First Quantitative Assessments

    Get PDF
    Groundwater contamination due to municipal solid waste landfills’ leachate is a serious environmental threat. Deuterium (2H) and oxygen (18O) isotopes have been successfully applied to identify groundwater contamination processes, due to interactions with municipal solid waste landfills’ leachate, including significant organic amounts. A parameter influencing the isotope content of deuterium and oxygen18 is the deuterium excess (d or d-excess). This paper presents a d-isotope-based model, defined early-warning model, depending on the assessment of the deuterium excess variations in groundwater samples. The isotopic results are corroborated with the trace elements’ concentrations (Fe, Mn, Ni, Co and Zn), suggesting that the methanogenic activity diminished under trace element limitation. This model provides the determination of an index, F, as the percentage variation of d-excess, which makes it possible to define an alert level system to assess and check groundwater contamination by leachate. The procedure shows that values of F index higher than 1.1 highlight possible contamination phenomena of groundwater due to leachate and, therefore, actions by the municipal solid waste landfill management are required. This early-warning model is presented by the application to a case study in Central Italy in order to evaluate innovative aspects and opportunities to optimize the model. The application of the procedure to the case study highlighted anomalous values of the F index for the samples AD16 (Fmax = 2.069) and AD13 (Fmax = 1.366) in January, April, July and October surveys as well as the boundary values (1 ≤ F ≤ 1.1) for samples AD73 (F = 1.229) and AD68 (F = 1.219) in the April survey. The proposed model can be a useful management tool for monitoring the potential contamination process of groundwater due to the presence of landfills with municipal solid waste, including a significant organic component

    Application of 2H and 18O Isotopes for Tracing Municipal Solid Waste Landfill Contamination of Groundwater. Two Italian Case Histories

    Get PDF
    Groundwater contamination due to municipal solid waste landfills leachate is a serious environmental threat. During recent years, the use of stable isotopes as environmental tracers to identify groundwater contamination phenomena has found application to environmental engineering. Deuterium (2H) and oxygen (18O) isotopes have successfully used to identify groundwater contamination phenomena if submitted to interactions with municipal solid waste landfills leachate, with a significant organic amount. The paper shows two case studies, in central and southern Italy, where potential contamination phenomenon of groundwater under municipal solid waste landfills occurred. In both cases, isotope compositions referred to 2H and 18O highlight a δ2H enrichment for some groundwater samples taken in wells, located near leachate storage wells. The δ2H enrichment is probably caused by methanogenesis phenomena, during which the bacteria use preferentially the hydrogen “lighter” isotope (1H), and the remaining enriched the “heavier” isotope (2H). The study of the isotope composition variation, combined with the spatial trend of some analytes (Fe, Mn, Ni) concentrations, allowed to identify interaction phenomena between the municipal solid waste landfills leachate and groundwater in both case histories. Therefore, these results confirm the effectiveness of 2H isotopes application as environmental tracer of groundwater contamination phenomena due to mixing with municipal solid waste landfills leachate

    Hydrogeochemistry and groundwater quality assessment in a municipal solid waste landfill (central Italy)

    Get PDF
    Municipal solid waste landfills leachate can cause serious environmental issues for groundwater quality. Therefore, the application of environmental tracing methods to identify groundwater contamination by municipal solid waste landfills leachate is significant. Hydrogeochemical evaluations to trace municipal solid waste landfills leachate are usually carried out. The study was carried out at a landfill in central Italy (Umbria). Samples of leachate and groundwater have been analyzed to evaluate the impact of leachates on groundwater through the comparison of their hydrogeochemical nature. Parameters like pH, Temperature (T), Electrical Conductivity (EC), redox potential (Eh) and Chemical Oxygen Demand (COD) were also measured in situ using digital instruments. Hydrogeochemical data (Na+, K+, Mg2+, Ca2+, SO42−, HCO3−, Cl−, NO3−), ionic ratios and geochemical correlations were used to confirm the processes that govern the chemistry of the spring water and to identify leachate contamination phenomena. In fact, the main geochemical diagrams (Langelier-Ludwig, Piper, Schoeller) confirm the leachate contamination in a groundwater sample. In particular, the Piper diagram shows that a sample is in Na+ – Cl- – HCO3- mixing zone, indicating a possible influence of the leachate on groundwater chemistry. As a matter of fact, some correlations between major elements, such as Cl- versus Na+ and Cl- versus HCO3-, confirm that the leachate in this study area is highly enriched in Cl- and HCO3- due to wastes dissolution and degradation processes. Further, the assessment of K+/Mg2+ ratio also confirms the presence of a sample heavily impacted from leachate contamination. These results indicate that also one basic hydrogeochemical study can be useful for fingerprinting the leachate pollution for groundwater samples

    CENDARI Archival Research Guide

    Get PDF
    This Archival Research Guide (ARG) aims to provide the user with a broad overview of the Archival Directory, a key component of the CENDARI Virtual Research Environment. The CENDARI Archival Directory consists of all available data in the AtoM application (“Access to Memory”) and data in the main repository, which is derived from international or national aggregators as well as national archives or other data providers. All data, whether manually inputted via the AtoM application or collected from institutions, form together the Archival Directory. In this guide the term “Archival Directory” refers only to the application AtoM and it hence will be used in this narrow sense. The term “Archival Directory AtoM” reinforces this definition. Unlike most of the other ARGs in CENDARI, this is not a thematic overview of a historical subject but instead a practical guide to the Archival Directory AtoM’s aims and how it was created and organised. This guide will present the methodology used by researchers associated with the CENDARI project when creating archival description and archival institution entries in CENDARI. It explains how material was selected to be entered into the Archival Directory AtoM, which institutions were considered as ‘hidden archives’ by the CENDARI team, what material was not included, the limitations of the project and the future of the Archival Directory AtoM. The CENDARI Archival Directory AtoM can be accessed both directly from the website and indirectly via the link provided in the Note-Taking Environment (NTE)

    Optimal data compression for Lyman-α\alpha forest cosmology

    Full text link
    The Lyman-α\alpha (Lyα\alpha) three-dimensional correlation functions have been widely used to perform cosmological inference using the baryon acoustic oscillation (BAO) scale. While the traditional inference approach employs a data vector with several thousand data points, we apply near-maximal score compression down to tens of compressed data elements. We show that carefully constructed additional data beyond those linked to each inferred model parameter are required to preserve meaningful goodness-of-fit tests that guard against unknown systematics, and to avoid information loss due to non-linear parameter dependencies. We demonstrate, on suites of realistic mocks and DR16 data from the Extended Baryon Oscillation Spectroscopic Survey, that our compression framework is lossless and unbiased, yielding a posterior that is indistinguishable from that of the traditional analysis. As a showcase, we investigate the impact of a covariance matrix estimated from a limited number of mocks, which is only well-conditioned in compressed space.Comment: Submitted to MNRA

    Direct cosmological inference from three-dimensional correlations of the Lyman-α\alpha forest

    Get PDF
    When performing cosmological inference, standard analyses of the Lyman-α\alpha (Lyα\alpha) three-dimensional correlation functions only consider the information carried by the distinct peak produced by baryon acoustic oscillations (BAO). In this work, we address whether this compression is sufficient to capture all the relevant cosmological information carried by these functions. We do this by performing a direct fit to the full shape, including all physical scales without compression, of synthetic Lyα\alpha auto-correlation functions and cross-correlations with quasars at effective redshift zeff=2.3z_{\rm{eff}}=2.3, assuming a DESI-like survey, and providing a comparison to the classic method applied to the same dataset. Our approach leads to a 3.5%3.5\% constraint on the matter density ΩM\Omega_{\rm{M}}, which is about three to four times better than what BAO alone can probe. The growth term fσ8(zeff)f \sigma_{8} (z_{\rm{eff}}) is constrained to the 10%10\% level, and the spectral index nsn_{\rm{s}} to 34%\sim 3-4\%. We demonstrate that the extra information resulting from our `direct fit' approach, except for the nsn_{\rm{s}} constraint, can be traced back to the Alcock-Paczy\'nski effect and redshift space distortion information.Comment: Submitted to MNRA

    Theoretical Compartment Modeling of DCE-MRI Data Based on the Transport across Physiological Barriers in the Brain

    Get PDF
    Neurological disorders represent major causes of lost years of healthy life and mortality worldwide. Development of their quantitative interdisciplinary in vivo evaluation is required. Compartment modeling (CM) of brain data acquired in vivo using magnetic resonance imaging techniques with clinically available contrast agents can be performed to quantitatively assess brain perfusion. Transport of 1H spins in water molecules across physiological compartmental brain barriers in three different pools was mathematically modeled and theoretically evaluated in this paper and the corresponding theoretical compartment modeling of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) data was analyzed. The pools considered were blood, tissue, and cerebrospinal fluid (CSF). The blood and CSF data were mathematically modeled assuming continuous flow of the 1H spins in these pools. Tissue data was modeled using three CMs. Results in this paper show that transport across physiological brain barriers such as the blood to brain barrier, the extracellular space to the intracellular space barrier, or the blood to CSF barrier can be evaluated quantitatively. Statistical evaluations of this quantitative information may be performed to assess tissue perfusion, barriers' integrity, and CSF flow in vivo in the normal or disease-affected brain or to assess response to therapy

    The CENDARI White Book of Archives

    Get PDF
    Over the course of its four year project timeline, the CENDARI project has collected archival descriptions and metadata in various formats from a broad range of cultural heritage institutions. These data were drawn together in a single repository and are being stored there. The repository contains curated data which has been manually established by the CENDARI team as well as data acquired from small, ‘hidden’ archives in spreadsheet format or from big aggregators with advanced data exchange tools in place. While the acquisition and curation of heterogeneous data in a single repository presents a technical challenge in itself, the ingestion of data into the CENDARI repository also opens up the possibility to process and index them through data extraction, entity recognition, semantic enhancement and other transformations. In this way the CENDARI project was able to act as a bridge between cultural heritage institutions and historical researchers, insofar as it drew together holdings from a broad range of institutions and enabled the browsing of this heterogeneous content within a single search space. This paper describes a broad range of ways in which the CENDARI project acquired data from cultural heritage institutions as well as the necessary technical background. In exemplifying diverse data creation or acquisition strategies, multiple formats and technical solutions, assets and drawbacks of a repository, this “White Book” aims at providing guidance and advice as well as best practices for archivists and cultural heritage institutions collaborating or planning to collaborate with infrastructure projects. http://www.cendari.eu/thematic- research-guides/white-book-archives The CENDARI White Book of Archives. Available from: http://hdl.handle.net/2262/7568

    Impact of protein-ligand solvation and desolvation on transition state thermodynamic properties of adenosine A2Aligand binding kinetics

    Get PDF
    Ligand-protein binding kinetic rates are growing in importance as parameters to consider in drug discovery and lead optimization. In this study we analysed using surface plasmon resonance (SPR) the transition state (TS) properties of a set of six adenosine A2Areceptor inhibitors, belonging to both the xanthine and the triazolo-triazine scaffolds. SPR highlighted interesting differences among the ligands in the enthalpic and entropic components of the TS energy barriers for the binding and unbinding events. To better understand at a molecular level these differences, we developed suMetaD, a novel molecular dynamics (MD)-based approach combining supervised MD and metadynamics. This method allows simulation of the ligand unbinding and binding events. It also provides the system conformation corresponding to the highest energy barrier the ligand is required to overcome to reach the final state. For the six ligands evaluated in this study their TS thermodynamic properties were linked in particular to the role of water molecules in solvating/desolvating the pocket and the small molecules. suMetaD identified kinetic bottleneck conformations near the bound state position or in the vestibule area. In the first case the barrier is mainly enthalpic, requiring the breaking of strong interactions with the protein. In the vestibule TS location the kinetic bottleneck is instead mainly of entropic nature, linked to the solvent behaviour

    In silico study of PEI-PEG-squalene-dsDNA polyplex formation: the delicate role of the PEG length in the binding of PEI to DNA

    Get PDF
    Using a two step simulation protocol the atomistic interactions between PEG and b-PEI and the effect of these interactions on DNA binding were determined
    corecore