95 research outputs found

    New Cases of Universality Theorem for Gravitational Theories

    Full text link
    The "Universality Theorem" for gravity shows that f(R) theories (in their metric-affine formulation) in vacuum are dynamically equivalent to vacuum Einstein equations with suitable cosmological constants. This holds true for a generic (i.e. except sporadic degenerate cases) analytic function f(R) and standard gravity without cosmological constant is reproduced if f is the identity function (i.e. f(R)=R). The theorem is here extended introducing in dimension 4 a 1-parameter family of invariants R' inspired by the Barbero-Immirzi formulation of GR (which in the Euclidean sector includes also selfdual formulation). It will be proven that f(R') theories so defined are dynamically equivalent to the corresponding metric-affine f(R) theory. In particular for the function f(R)=R the standard equivalence between GR and Holst Lagrangian is obtained.Comment: 10 pages, few typos correcte

    Flat bidifferential ideals and semihamiltonian PDEs

    Full text link
    In this paper we consider a class of semihamiltonian systems characterized by the existence of a special conservation law. The density and the current of this conservation law satisfy a second order system of PDEs which has a natural interpretation in the theory of flat bifferential ideals. The class of systems we consider contains important well-known examples of semihamiltonian systems. Other examples, like genus 1 Whitham modulation equations for KdV, are related to this class by a reciprocal trasformation.Comment: 18 pages. v5: formula (36) corrected; minor change

    Two-Dimensional Dilaton-Gravity Coupled to Massless Spinors

    Get PDF
    We apply a global and geometrically well-defined formalism for spinor-dilaton-gravity to two-dimensional manifolds. We discuss the general formalism and focus attention on some particular choices of the dilatonic potential. For constant dilatonic potential the model turns out to be completely solvable and the general solution is found. For linear and exponential dilatonic potentials we present the class of exact solutions with a Killing vector.Comment: 21 pages, LaTeX, minor changes in text and format, final version to appear in Classical and Quantum Gravit

    Boundary Conditions, Energies and Gravitational Heat in General Relativity (a Classical Analysis)

    Full text link
    The variation of the energy for a gravitational system is directly defined from the Hamiltonian field equations of General Relativity. When the variation of the energy is written in a covariant form it splits into two (covariant) contributions: one of them is the Komar energy, while the other is the so-called covariant ADM correction term. When specific boundary conditions are analyzed one sees that the Komar energy is related to the gravitational heat while the ADM correction term plays the role of the Helmholtz free energy. These properties allow to establish, inside a classical geometric framework, a formal analogy between gravitation and the laws governing the evolution of a thermodynamic system. The analogy applies to stationary spacetimes admitting multiple causal horizons as well as to AdS Taub-bolt solutions.Comment: Latex file, 31 pages; one reference and two comments added, misprints correcte

    Accelerated Cosmological Models in Ricci squared Gravity

    Full text link
    Alternative gravitational theories described by Lagrangians depending on general functions of the Ricci scalar have been proven to give coherent theoretical models to describe the experimental evidence of the acceleration of universe at present time. In this paper we proceed further in this analysis of cosmological applications of alternative gravitational theories depending on (other) curvature invariants. We introduce Ricci squared Lagrangians in minimal interaction with matter (perfect fluid); we find modified Einstein equations and consequently modified Friedmann equations in the Palatini formalism. It is striking that both Ricci scalar and Ricci squared theories are described in the same mathematical framework and both the generalized Einstein equations and generalized Friedmann equations have the same structure. In the framework of the cosmological principle, without the introduction of exotic forms of dark energy, we thus obtain modified equations providing values of w_{eff}<-1 in accordance with the experimental data. The spacetime bi-metric structure plays a fundamental role in the physical interpretation of results and gives them a clear and very rich geometrical interpretation.Comment: New version: 26 pages, 1 figure (now included), Revtex

    One-loop f(R) gravity in de Sitter universe

    Full text link
    Motivated by the dark energy issue, the one-loop quantization approach for a family of relativistic cosmological theories is discussed in some detail. Specifically, general f(R)f(R) gravity at the one-loop level in a de Sitter universe is investigated, extending a similar program developed for the case of pure Einstein gravity. Using generalized zeta regularization, the one-loop effective action is explicitly obtained off-shell, what allows to study in detail the possibility of (de)stabilization of the de Sitter background by quantum effects. The one-loop effective action maybe useful also for the study of constant curvature black hole nucleation rate and it provides the plausible way of resolving the cosmological constant problem.Comment: 25 pages, Latex file. Discussion enlarged, new references added. Version accepted in JCA

    The Universality of Einstein Equations

    Get PDF
    It is shown that for a wide class of analytic Lagrangians which depend only on the scalar curvature of a metric and a connection, the application of the so--called ``Palatini formalism'', i.e., treating the metric and the connection as independent variables, leads to ``universal'' equations. If the dimension nn of space--time is greater than two these universal equations are Einstein equations for a generic Lagrangian and are suitably replaced by other universal equations at bifurcation points. We show that bifurcations take place in particular for conformally invariant Lagrangians L=Rn/2gL=R^{n/2} \sqrt g and prove that their solutions are conformally equivalent to solutions of Einstein equations. For 2--dimensional space--time we find instead that the universal equation is always the equation of constant scalar curvature; the connection in this case is a Weyl connection, containing the Levi--Civita connection of the metric and an additional vectorfield ensuing from conformal invariance. As an example, we investigate in detail some polynomial Lagrangians and discuss their bifurcations.Comment: 15 pages, LaTeX, (Extended Version), TO-JLL-P1/9

    Constraining f(R) gravity in the Palatini formalism

    Full text link
    Although several models of f(R)f(R) theories of gravity within the Palatini approach have been studied already, the interest was concentrated on those that have an effect on the late-time evolution of the universe, by the inclusion for example of terms inversely proportional to the scalar curvature in the gravitational action. However, additional positive powers of the curvature also provide interesting early-time phenomenology, like inflation, and the presence of such terms in the action is equally, if not more, probable. In the present paper models with both additional positive and negative powers of the scalar curvature are studied. Their effect on the evolution of the universe is investigated for all cosmological eras, and various constraints are put on the extra terms in the actions. Additionally, we examine the extent to which the new terms in positive powers affect the late-time evolution of the universe and the related observables, which also determines our ability to probe their presence in the gravitational action.Comment: reference update and minor changes to match published versio

    Subset currents on free groups

    Full text link
    We introduce and study the space of \emph{subset currents} on the free group FNF_N. A subset current on FNF_N is a positive FNF_N-invariant locally finite Borel measure on the space CN\mathfrak C_N of all closed subsets of FN\partial F_N consisting of at least two points. While ordinary geodesic currents generalize conjugacy classes of nontrivial group elements, a subset current is a measure-theoretic generalization of the conjugacy class of a nontrivial finitely generated subgroup in FNF_N, and, more generally, in a word-hyperbolic group. The concept of a subset current is related to the notion of an "invariant random subgroup" with respect to some conjugacy-invariant probability measure on the space of closed subgroups of a topological group. If we fix a free basis AA of FNF_N, a subset current may also be viewed as an FNF_N-invariant measure on a "branching" analog of the geodesic flow space for FNF_N, whose elements are infinite subtrees (rather than just geodesic lines) of the Cayley graph of FNF_N with respect to AA.Comment: updated version; to appear in Geometriae Dedicat

    f(R) theories of gravity in Palatini approach matched with observations

    Get PDF
    We investigate the viability of f(R) theories in the framework of the Palatini approach as solutions to the problem of the observed accelerated expansion of the universe. Two physically motivated popular choices for f(R) are considered: power law, f(R) = \beta R^n, and logarithmic, f(R) = \alpha \ln{R}. Under the Palatini approach, both Lagrangians give rise to cosmological models comprising only standard matter and undergoing a present phase of accelerated expansion. We use the Hubble diagram of type Ia Supernovae and the data on the gas mass fraction in relaxed galaxy clusters to see whether these models are able to reproduce what is observed and to constrain their parameters. It turns out that they are indeed able to fit the data with values of the Hubble constant and of the matter density parameter in agreement with some model independent estimates, but the today deceleration parameter is higher than what is measured in the concordance LambdaCDM model.Comment: 14 pages, 8 figures, submitted to Physical Review
    corecore