4 research outputs found

    The wearable co-design domino: A user-centered methodology to co-design and co-evaluate wearables

    Get PDF
    This paper presents a user-centered methodology to co-design and co-evaluate wearables that has been developed following a research-through design methodology. It has been based on the principles of human–computer interaction and on an empirical case entitled “Design and Development of a Low-Cost Wearable Glove to Track Forces Exerted by Workers in Car Assembly Lines” published in Sensors. Insights from both studies have been used to develop the wearable co-design domino presented in this study. The methodology consists of different design stages composed of an ideation stage, digital service development and test stages, hardware development and test stage, and a final test stage. The main conclusions state that it is necessary to maintain a close relationship between human factors and technical factors when designing wearable. Additionally, through the several studies, it has been concluded that there is need of different field experts that should co-design and co-evaluate wearable iteratively and involving users from the beginning of the process

    Wearable design requirements identification and evaluation

    Get PDF
    : Wearable electronics make it possible to monitor human activity and behavior. Most of these devices have not taken into account human factors and they have instead focused on technological issues. This fact could not only affect human–computer interaction and user experience but also the devices’ use cycle. Firstly, this paper presents a classification of wearable design requirements that have been carried out by combining a quantitative and a qualitative methodology. Secondly, we present some evaluation procedures based on design methodologies and human–computer interaction measurement tools. Thus, this contribution aims to provide a roadmap for wearable designers and researchers in order to help them to find more efficient processes by providing a classification of the design requirements and evaluation tools. These resources represent time and resource-saving contributions. Therefore designers and researchers do not have to review the literature. It will no be necessary to carry out exploratory studies for the purposes of identifying requirements or evaluation tools either

    The wearable co-design domino: A user-centered methodology to co-design and co-evaluate wearables

    No full text
    This paper presents a user-centered methodology to co-design and co-evaluate wearables that has been developed following a research-through design methodology. It has been based on the principles of human–computer interaction and on an empirical case entitled “Design and Development of a Low-Cost Wearable Glove to Track Forces Exerted by Workers in Car Assembly Lines” published in Sensors. Insights from both studies have been used to develop the wearable co-design domino presented in this study. The methodology consists of different design stages composed of an ideation stage, digital service development and test stages, hardware development and test stage, and a final test stage. The main conclusions state that it is necessary to maintain a close relationship between human factors and technical factors when designing wearable. Additionally, through the several studies, it has been concluded that there is need of different field experts that should co-design and co-evaluate wearable iteratively and involving users from the beginning of the process

    Wearable design requirements identification and evaluation

    No full text
    : Wearable electronics make it possible to monitor human activity and behavior. Most of these devices have not taken into account human factors and they have instead focused on technological issues. This fact could not only affect human–computer interaction and user experience but also the devices’ use cycle. Firstly, this paper presents a classification of wearable design requirements that have been carried out by combining a quantitative and a qualitative methodology. Secondly, we present some evaluation procedures based on design methodologies and human–computer interaction measurement tools. Thus, this contribution aims to provide a roadmap for wearable designers and researchers in order to help them to find more efficient processes by providing a classification of the design requirements and evaluation tools. These resources represent time and resource-saving contributions. Therefore designers and researchers do not have to review the literature. It will no be necessary to carry out exploratory studies for the purposes of identifying requirements or evaluation tools either
    corecore