199 research outputs found

    The Influence of Slow Calcium-Activated Potassium Channels on Epileptiform Activity in a Neuronal Model of Pyramidal Cells

    Get PDF
    An imbalance between excitation and inhibition can play an important role in the generation of epileptiform activity. Experimental evidence indicates that alterations of either synaptic activity or intrinsic membrane properties may contribute to this imbalance. The slow Ca2+ - activated K+ currents (sIAHP) limit neuronal firing rate and excitability and are therefore of great interest for their potential role in epileptogenesis. The sIAHP is found in both excitatory and inhibitory neurons, and its effect on these neurons can influence the network behavior. Simulations show that the increased excitability caused by reduction of inhibition by the sIAHP for inhibitory interneuron generates recurrent bursting activity

    Inhibition Modifies the Effects of Slow Calcium-Activated Potassium Channels on Epileptiform Activity in a Neuronal Network Model

    Get PDF
    Generation of epileptiform activity typically results from a change in the balance between network excitation and inhibition. Experimental evidence indicates that alterations of either synaptic activity or intrinsic membrane properties can produce increased network excitation. The slow Ca2+-activated K+ currents (sI AHP) are important modulators of neuronal firing rate and excitability and have important established and potential roles in epileptogenesis. While the effects of changes in sI AHP on individual neuronal excitability are readily studied and well established, the effects of such changes on network behavior are less well known. The experiments here utilize a defined small network model of multicompartment pyramidal cells and an inhibitory interneuron to study the effects of changes in sI AHP on network behavior. The benefits of this model system include the ability to observe activity in all cells in a network and the effects of interactions of multiple simultaneous influences. In the model with no inhibitory interneuron, increasing sI AHP results in progressively decreasing burst activity. Adding an inhibitory interneuron changes the observed effects; at modest inhibitory strengths, increasing sI AHP in all network neurons actually results in increased network bursting (except at very high values). The duration of the burst activity is influenced by the length of delay in a feedback loop, with longer loops resulting in more prolonged bursting. These observations illustrate that the study of potential antiepileptogenic membrane effects must be extended to realistic networks. Network inhibition can dramatically alter the observations seen in pure excitatory networks

    The Effect of Changes in the Inhibitory Interneuron Connectivity on the Pattern of Bursting Behavior in a Pyramidal Cell Model

    Get PDF
    Inhibitory interneurons play crucial roles in the regulation of patterns of activity in the hippocampus, and some types are thought to be vulnerable in epilepsy. The connections between excitatory and inhibitory synapses are important for generation of bursting activity in pyramidal neurons. The present study investigates the influences of changes in the connectivity of interneurons on the patterns of bursting in several excitatory connections using a multicompartmental pyramidal cell model. Simulations show that bursting activity depends upon changes in the connectivity of the inhibitory interneuron, and the location of the inhibitory synapses on excitatory neurons

    The Influences of GABAA and GABAB Inhibition in Bursting Activity in a Model of Pyramidal Cells

    Get PDF
    This work provides information from the AES Proceedings on epilepsy

    Studies of properties of “Pain Networks” as predictors of targets of stimulation for treatment of pain

    Get PDF
    Two decades of functional imaging studies have demonstrated pain-related activations of primary somatic sensory cortex (S1), parasylvian cortical structures (PS), and medial frontal cortical structures (MF), which are often described as modules in a “pain network.” The directionality and temporal dynamics of interactions between and within the cortical and thalamic modules are uncertain. We now describe our studies of these interactions based upon recordings of local field potentials (LFPs) carried out in an epilepsy monitoring unit over the one week period between the implantation and removal of cortical electrodes during the surgical treatment of epilepsy. These recordings have unprecedented clarity and resolution for the study of LFPs related to the experimental pain induced by cutaneous application of a Thulium YAG laser. We also used attention and distraction as behavioral probes to study the psychophysics and neuroscience of the cortical “pain network.” In these studies, electrical activation of cortex was measured by event-related desynchronization (ERD), over SI, PS, and MF modules, and was more widespread and intense while attending to painful stimuli than while being distracted from them. This difference was particularly prominent over PS. In addition, greater perceived intensity of painful stimuli was associated with more widespread and intense ERD. Connectivity of these modules was then examined for dynamic causal interactions within and between modules by using the Granger causality (GRC). Prior to the laser stimuli, a task involving attention to the painful stimulus consistently increased the number of event-related causality (ERC) pairs both within the SI cortex, and from SI upon PS (SI > PS). After the laser stimulus, attention to a painful stimulus increased the number of ERC pairs from SI > PS, and SI > MF, and within the SI module. LFP at some electrode sites (critical sites) exerted ERC influences upon signals at multiple widespread electrodes, both in other cortical modules and within the module where the critical site was located. In summary, critical sites and SI modules may bind the cortical modules together into a “pain network,” and disruption of that network by stimulation might be used to treat pain. These results in humans may be uniquely useful to design and optimize anatomically based pain therapies, such as stimulation of the S1 or critical sites through transcutaneous magnetic fields or implanted electrodes

    A Topological Deep Learning Framework for Neural Spike Decoding

    Full text link
    The brain's spatial orientation system uses different neuron ensembles to aid in environment-based navigation. One of the ways brains encode spatial information is through grid cells, layers of decked neurons that overlay to provide environment-based navigation. These neurons fire in ensembles where several neurons fire at once to activate a single grid. We want to capture this firing structure and use it to decode grid cell data. Understanding, representing, and decoding these neural structures require models that encompass higher order connectivity than traditional graph-based models may provide. To that end, in this work, we develop a topological deep learning framework for neural spike train decoding. Our framework combines unsupervised simplicial complex discovery with the power of deep learning via a new architecture we develop herein called a simplicial convolutional recurrent neural network (SCRNN). Simplicial complexes, topological spaces that use not only vertices and edges but also higher-dimensional objects, naturally generalize graphs and capture more than just pairwise relationships. Additionally, this approach does not require prior knowledge of the neural activity beyond spike counts, which removes the need for similarity measurements. The effectiveness and versatility of the SCRNN is demonstrated on head direction data to test its performance and then applied to grid cell datasets with the task to automatically predict trajectories

    Language Mapping in Multilingual Patients: Electrocorticography and Cortical Stimulation During Naming

    Get PDF
    Multilingual patients pose a unique challenge when planning epilepsy surgery near language cortex because the cortical representations of each language may be distinct. These distinctions may not be evident with routine electrocortical stimulation mapping (ESM). Electrocorticography (ECoG) has recently been used to detect task-related spectral perturbations associated with functional brain activation. We hypothesized that using broadband high gamma augmentation (HGA, 60–150 Hz) as an index of cortical activation, ECoG would complement ESM in discriminating the cortical representations of first (L1) and second (L2) languages. We studied four adult patients for whom English was a second language, in whom subdural electrodes (a total of 358) were implanted to guide epilepsy surgery. Patients underwent ECoG recordings and ESM while performing the same visual object naming task in L1 and L2. In three of four patients, ECoG found sites activated during naming in one language but not the other. These language-specific sites were not identified using ESM. In addition, ECoG HGA was observed at more sites during L2 versus L1 naming in two patients, suggesting that L2 processing required additional cortical resources compared to L1 processing in these individuals. Post-operative language deficits were identified in three patients (one in L2 only). These deficits were predicted by ECoG spectral mapping but not by ESM. These results suggest that pre-surgical mapping should include evaluation of all utilized languages to avoid post-operative functional deficits. Finally, this study suggests that ECoG spectral mapping may potentially complement the results of ESM of language

    Ictal propagation of high frequency activity is recapitulated in interictal recordings: effective connectivity of epileptogenic networks recorded with intracranial EEG

    Get PDF
    Seizures are increasingly understood to arise from epileptogenic networks across which ictal activity is propagated and sustained. In patients undergoing invasive monitoring for epilepsy surgery, high frequency oscillations have been observed within the seizure onset zone during both ictal and interictal intervals. We hypothesized that the patterns by which high frequency activity is propagated would help elucidate epileptogenic networks and thereby identify network nodes relevant for surgical planning. Intracranial EEG recordings were analyzed with a multivariate autoregressive modeling technique (short-time direct directed transfer function--SdDTF), based on the concept of Granger causality, to estimate the directionality and intensity of propagation of high frequency activity (70-175 Hz) during ictal and interictal recordings. These analyses revealed prominent divergence and convergence of high frequency activity propagation at sites identified by epileptologists as part of the ictal onset zone. In contrast, relatively little propagation of this activity was observed among the other analyzed sites. This pattern was observed in both subdural and depth electrode recordings of patients with focal ictal onset, but not in patients with a widely distributed ictal onset. In patients with focal ictal onsets, the patterns of propagation recorded during pre-ictal (up to 5 min immediately preceding ictal onset) and interictal (more than 24h before and after seizures) intervals were very similar to those recorded during seizures. The ability to characterize epileptogenic networks from interictal recordings could have important clinical implications for epilepsy surgery planning by reducing the need for prolonged invasive monitoring to record spontaneous seizures
    corecore