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Abstract

Introduction: Detrended fluctuation analysis (DFA) is a well-established method to

evaluate scaling indices of time series, which categorize the dynamics of complex sys-

tems. In the literature, DFA has been used to study the fluctuations of reaction time

Y(n) time series, where n is the trial number.

Methods: Herein we propose treating each reaction time as a duration time that

changes the representation from operational (trial number) time n to event (temporal)

time t, or X(t). The DFA algorithm was then applied to the X(t) time series to evaluate

scaling indices. The dataset analyzed is based on a Go–NoGo shooting task that was

performed by 30 participants under low and high time-stress conditions in each of six

repeated sessions over a 3-week period.

Results: This new perspective leads to quantitatively better results in (1) differentiat-

ing scaling indices between low versus high time-stress conditions and (2) predicting

task performance outcomes.

Conclusion:We show that by changing from operational time to event time, the DFA

allows discrimination of time-stress conditions and predicts performance outcomes.
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1 INTRODUCTION

Reaction time has been the standardmeasure of perceptual-motor and

cognitive performance for more than a century (Luce, 1986; Meyer

et al., 1988). Typically, reaction time data have been analyzed based on

statistical moments of the distribution of reaction time latencies over

all trials in various experimental conditions (mean, variance, skewness,

and kurtosis). However, this approach fails to capture the underlying

temporal dynamics of the intermittent fluctuations inherent in ordered

sequences of reaction times over trials, which are central to model-

ing neural latency mechanisms at a macroscopic scale (Luce, 1986;
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Smith & Ratcliff, 2004). When analyzed as temporal sequences of

ordered reaction time trials, that is, a time series of reaction time laten-

cies from 1 to N trials (hereafter referred to as Y(n)), previous research

reveals inverse power law (IPL) statistics in cognitive and behavioral

time series data (Correll, 2008; Gilden, 2001, 1995; Grigolini et al.,

2009;Kello et al., 2007, 2010; Simola et al., 2017;Wijnants et al., 2009).

Such IPL temporal probability density functions (PDFs) are known

to have IPL power spectral densities (PSD) S(f) ∝ f−𝛽 where f is the

frequency, and this 1/f-variability has been interpreted to be a con-

sequence of long-range temporal correlations (LRTCs). The PSD IPL

index 𝛽 is related to the IPL index α of the temporal PDF measured by
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TABLE 1 The relation among the scaling indices 𝛼, 𝛽, and 𝜇, which
can bemeasured, respectively, from detrended fluctuation analysis
(DFA), power spectral densities (PSD) S(f), and the waiting-time
probability density function (PDF) ψ(t) of the time series

Scaled functions Parameter relations Parameter range

Waiting-time PDF ψ(t)∝ t−μ μ= 3− β 1< μ< 3

Power spectrum S(f)∝ f−β

Scale variable X(t)∝ tα μ= 4− 2α

Note: The value μ= 2 is the boundary between the underlying process hav-

ing a finite (μ > 2) or an infinite (μ < 2) average waiting time and is also the

point at which β= 1where the process is that of 1/f-noise.

detrended fluctuation analysis (DFA) (2α−1 = 𝛽) and determines the

well-known 1/f-noisewhen 𝛽 = 1. Simola et al. (2017) argued that the

LRTCarises fromcritical dynamics and use this perspective to resolve a

long-standing controversy concerning the source of LRTC in response

time fluctuations. They concluded: “Our findings thus favor the hypoth-

esis that LRTCs are caused [by] the system being in a critical state over

the idea that these LRTCswould reflect long-memory dynamics” (p. 2).

1.1 Introducing crucial events (CEs)

Researchers have shown that individuals performing more difficult

tasks requiring greater cognitive effort exhibit relatively smaller IPL

indices 𝛽 of reaction time series, Y(n), than those observed for simpler

tasks. For example, in a series of experiments, Kello et al. (2007) found

smaller IPL indices 𝛽 for variable versus fixed trial intervals, random

versus patterned cues, and unpreviewed versus previewed trials. Wij-

nants et al. (2009) showed that IPL scaling 𝛽 indices become greater

(more clearly patterned 1/f-variability) as participants become more

skilled in a precision-aiming motor task over blocks of practice. Cor-

rell (2008) found smaller IPL indices 𝛽 in participants who reported a

high level of effort to avoid racial bias while responding to black ver-

sus white target stimuli under threat/no-threat conditions (see also

Grigolini et al., 2009 for a theoretical explanation). Overall, the evi-

dence suggests that greater IPL indices 𝛽 are indicative of greater

levels of cognitive and behavioral performance and/or performance of

simpler tasks.

In a similarGo–NoGoparadigm, Simola et al. (2017) showed that IPL

scaling indices 𝛽 were inversely related to cognitive flexibility, as mea-

sured by errors of commission (i.e., by greater IPL indices 𝛽 associated

with a lower number of errors). Although Simola et al. (2017) found

support for criticality being thebasis of LRTCs, theydonot consider the

alternative explanation that CEsmight offer in a self-organizing critical

system. CEs are defined to be a sequence of events separated by time

intervals that are statistically independent of one another. The time

intervals between independent events are generated by an IPL PDF

with the IPL index 𝜇 that lies in the interval 1 < 𝜇 < 3. The relationship

between complexity indices α, β, and μ is summarized in Table 1.

Finally, the statistical distribution of the CEs is renewal and conse-

quently possesses a new kind of memory, one associated with renewal

processes. This new kind of memory was discovered by Allegrini et al.

(2002) and was given the apt name “memory beyond memory.” It is

this new kind of memory that is often confused with LRTC (West &

Grigolini, 2021), the latter reflecting long-memory dynamics, whereas

the former is a statistical property of the renewal CEs. The leading

question therefore arises as to whether the true source of the IPL PDF

of the Y(n) can be quantitatively determined. If the Y(n) time series

is renewal, which is to say it is a CE time series, the above question

could be answered because the time series would necessarily have the

following properties:

“The time series generated by complex processes are characterized

by three regimes: the short-time regime, where the true complexity of

theprocess is not yet perceived; an intermediate-time regimedrivenby

the CEs; and a long-time regimewhere the process can bemistaken for

an ordinary statistical process” (West &Grigolini, 2021, p. 16).

1.2 Empirical data

In the present work, the existence of IPL scaling indices is examined

using data previously recorded during aGo–NoGo shooting task under

low and high time-stress conditions as part of a neurofeedback training

study (See Task and Procedures and Figure 1 below, and Kerick et al.,

2023 formore details).We are not aware of previous research that has

investigated the effects of time stress on scaling indices over different

time scaleswithin and across repeated experimental sessions spanning

several days or weeks. In this research, we define short-time regimes

at the single-trial level (milliseconds), intermediate-time regimes at the

single-task level within each session (each low and high time-stress

conditions; 8–10 min), and long-time regimes at the between-session

level (6 sessions over a 3-week period). Herein, we examine the effects

of time stress on IPL scaling indices under conditionswith shorter (high

stress; ∼250–750 ms) and longer (low stress; ∼600–1000 ms) time

allocated for the task (i.e., target exposure durations) within and across

six sessions.

The shooting task required the participants to scan the environ-

ment for targets appearing over spatially distributed locations, detect

and orient the weapon toward the target upon its appearance, iden-

tify whether the target is friend or foe, decide whether to shoot or

not, and if the decision is to shoot, the participant must accurately

aim and fire the weapon within the constrained time interval in which

the target is exposed. As a task designed to assess inhibitory exec-

utive control mechanisms by evaluating errors of commission (shots

fired at friendly targets), this shooting task variant represents a more

ecologically valid, complex, and challenging Go–NoGo task than has

been implemented in previous research. Typically, Go–NoGo tasks con-

sist of stimuli appearing on a computer screen in a fixed location, and

Go responses are simple button presses on a keyboard (Correll, 2008;

Simola et al., 2017). We also have a relatively small number of trials in

each condition in each session (n = 360) because the previous study

was structured to limit the overall length of the experiment, which

could introduce additional effects of boredom or fatigue. Thus, these

data present a challenge for rigorous testing of theoretical models and
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F IGURE 1 Left panel: Virtual reality Go–NoGo shooting task via participant’s first-person perspective in HTCVive; right panel: example
participant’s reaction time trial series in low (top) and high (bottom) time-stress conditions. Red circles indicate errors of commission; gaps in time
series indicate lack of trigger responses on those trials (i.e., correct omissions to friendly targets or errors of omission to enemy targets).

analytical approaches for identifying power laws, IPLs, and scaling from

shorter time series generated under more complicated task conditions

than in previous applications.

Because of the comparatively small dataset resulting from our rel-

atively short reaction time series, the previously established methods

donotprovide reasonable estimatesof the IPL scaling index𝛽. The scal-

ing index in previous studies is typically estimated by finding the slope

of a linear approximation to the PSD function in log–log coordinates.

ThePSDestimate is usually achievedby applying the fast Fourier trans-

form to the reaction time trial series (1:N), which requires a relatively

large number of stationary data points to obtain low variance and sta-

ble PSDestimates. Typically, researchers implement tasks consisting of

1000 or more trials to enable stable spectral estimates, and the evolu-

tion of longer periods to observe slow fluctuations, although as few as

200 trials have been employed (Correll, 2008). Because the IPL selec-

tion of interest in a PSD occurs at low frequency, we need to have long

time series to obtainmeaningful IPL behavior for at least one decade of

frequency. As such, short time series create noisy PSD estimates, and

consequently IPLs of uncertain slope, with a corresponding IPL index β.

1.3 New way to process reaction time series

DFA has been widely used to measure the scaling indices α of reac-

tion time series (Delignieres et al., 2006; Simola et al., 2017; Wijnants

et al., 2009). In previous studies, the signals analyzed byDFAhave been

the Y(n) time series measured at each trial n of the experiments. This

represents a time series expressed in trial intervals referred to as oper-

ational time (Turalska & West, 2018). For simple tasks, IPL relations

have been found using the IPL index for the PSD 𝛽, or power law rela-

tionsusingDFAα (Correll, 2008;Gilden, 2001;Kello et al., 2007; Simola

et al., 2017). However, we show herein that for reaction time series

from amore realistic task having short trial sequences, neither the PSD

method nor the DFA technique is able to extract a reliable measure of

the scaling indices of the process.

Herein, we propose a new perspective by considering each reaction

time as a time interval (t in ms) rather than a trial number (n) and fill-

ing each reaction time latency interval (i.e., event time) with the noise

of fixed amplitude (of magnitude 1 and a random chosen sign ± for

the interval; see Figure 2). This represents a latency or duration time

series expressed as the new variable X(t), which is a function of tempo-

ral intervals (not trial numbers) referred to as chronological time, see

Section 2.5 for details (Turalska & West, 2018).1 This secondary time

series, X(t) (Figure 2, panel c) represents the rigidity (constant noise)

and flexibility (changing sign) of the process. By measuring the com-

plexity of the X(t) time series, using DFA, we find a clear classification

of scaling indices between lowandhigh time-stress conditions.Wealso

find clear trends between scaling indices and errors of commission.

Neither of these findingswas observed for the traditional DFA analysis

of Y(n) time series.

To show the connection of the scaling index α of the X(t) time series,

measured using DFA, to the temporal complexity index μ, we introduce
a simulation where the relation between the two scaling indices can be

established and tested. The simulated Y(n) time series, with an IPL PDF

having an IPL index μ, is generated using the well-known Manneville

map (Manneville, 1980). Then,we created the corresponding simulated

X(t) time series from the simulated Y(n) andmeasured the scaling index

α via DFA. Consequently, we find the empirical relation between α and
𝜇, 𝜇 = 4 − 2𝛼, making it possible to connect α to the IPL index of the
PSD (β=3−μ) and therefore adapt the technique to empirical reaction

time datasets.

1 Hereafter we replace the term chronological timewith event time because the time intervals

between reaction time trials during the continuous task are ignored (i.e., time after a response

has been made until the time of the next target onset), whereas the durations of the reaction

time latencies are taken as events with temporal durations. As mentioned, see Section 2.5 for

details of how X(t) is obtained from Y(n) by means of an analytic transformation.
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F IGURE 2 The schematics of changing data from operational time Y(n) (a) to event time X(t) (c): (Panel a) the initial Y(n) data; (Panel b) each
data point in operational time Y(n) is considered a duration time; (Panel c) to create X(t), each duration is filled with+1 or−1, assigned randomly (in
this example, each latency interval is filled with+1,−1,+1,+1, and−1, respectively); (Panel d) the S(t) trajectory is the cumulative sum of X(t),
notice that because of the random assignment of signs, there aremany possible trajectories in event time X(t)’s. Thus, we use an ensemble average
for our analysis to consider this variety, especially for short time series. In panels (b) and (c), t represents accumulated durations of reaction times.
Note that the trajectory X(t) hosts both CEs and non-CEs from the empirical trials. The trajectory is then analyzed using detrended fluctuation
analysis (DFA) to determine the scaling index α, which is not the same index as that obtained by applying DFA to Y(n). This difference is discussed in
the following section.

2 METHODS

2.1 Participants

Thirty (13 female) young healthy adults (ages 18–40 years; mean

24.99± 3.21 years) participated in 6 separate sessionswithin a 3-week

interval. Volunteers who agreed to participate were asked to read

and sign an Informed Consent Agreement (approved by the Human

Use Committee at the US Army Research Laboratory and the Institu-

tional Review Board at the University of Maryland, Baltimore County,

in accordance with the Declaration of Helsinki and the U.S. Code of

Federal Regulations).

2.2 Task design

The Go–NoGo task was implemented in virtual reality using HTC

Vive (https://www.vive.com/us/). In each session, the participants com-

pleted four blocks of 90 trials (360 total trials) in each low and

high time-stress condition (2160 total trials in each condition over

6 sessions). The durations of each shooting task condition in each

session were approximately 8–10 min. Pop-up targets were pseudo-

randomly distributed 40 times at each of 9 range locations (three

simulated distances (near, mid, and far) by three lanes (left, center,

and right) and exposed at variable onset intervals (1000 ± 500 ms

over a Gaussian-distributed range of 100 ms increments) for various

target exposure durations (see Figure 1). The probability of targets

(enemy; red) tonontargets (friendly; green)was0.90/0.10, respectively

(i.e., 324 enemy targets and 36 friendly targets were presented) to

induce a prepotent response bias (see Kerick et al., 2023 for more

details).

The participants were instructed to “shoot enemy targets as

quickly and accurately as possible, while refraining from shooting at

friendly targets.” Time-stress conditions were individualized based

on a pretesting performance thresholding procedure to account for

individual differences in participants’ ability to perform the task.

This was done by empirically determining target exposure durations

corresponding to the 50th (High time-stress) and 90th (Low time-

stress) percentile hit-rates in response to 100 enemy targets using

psychophysical methods (method of limits; Ehrenstein & Ehrenstein,

1999). The mean (SD) target exposure time in the low time-stress con-

dition was 842.78 ms (216.65 ms) and 547.96 ms (223.20 ms) in the

high. Figure 1 provides example reaction time series from a represen-

tative subject in low and high time-stress conditions in one session.

Herein we analyze the scaling index of reaction times series and exam-

ine their relation to the performance measure errors of commission,

defined as shots fired at friendly targets (failure to inhibit incorrect

responses).

2.3 Data analysis

Across all subjects, sessions, and conditions, 122,153 raw reaction time

trials were first pruned of extreme latency values (100 ms < reaction

time < 1500 ms). This resulted in the removal of 659 reaction time

trials (121,494 preserved for subsequent analysis). After trimming the

https://www.vive.com/us/
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F IGURE 3 The left panels show the graph for detrended fluctuation analysis (DFA) on the Y(n) time series of one participant during an
individual session (top–left) and during all sessions appended (bottom–left). The right panels show the graph for DFA on the corresponding X(t)
time series (created according to the description in Figure 2) of the same participant during an individual session (top–right) and during all sessions
appended (bottom–right).

datasets of outliers, we proceeded with DFA analyses of Y(n) and X(t),

eachat the single session time scale (360 trials) andacross all 6 sessions

concatenated (2160 trials). Concatenating trials from all six sessions

enabled analyses of longer time series over longer time scales. We

also simulated Y(n) and X(t) time series consisting of temporal com-

plexity consistent with our empirical observations at each time scale.

It should be noted here that the number of reaction time trials for each

subject, condition, and session was variable because variable numbers

of errors of commission (friendly-fire errors) and omission (failure to

fire at enemy targets) were inherent in the data. The mean (SD) reac-

tion time latencies in the Low time-stress condition were 529.00 ms

(164.79 ms) and 441.44 ms (121.57 ms) in the high time-stress condi-

tion collapsed across sessions and was a statistically significant main

effect of condition (p < .01) (see Kerick et al., 2023 for additional

analyses).

2.4 DFA analysis of Y(n) time series

For each subject under each condition and time scale, we computed

the percentage of errors of commission and applied DFA analyses to

Y(n) time series.DFA is applied to reveal long-range correlations in time

series (Peng et al., 1995). Herewe explain the steps for DFA on Y(n): (1)

integrating Y(n) over n trails to obtain S(n); (2) dividing S(n) into win-

dows of length w; (3) deriving least squares line to fit the dataset in

each window, Sw(n); (4) calculating the root mean square amplitude in

each windoww, F(w) of Equation (1); (5) average the F(w)s; (6) repeat 1

through 5 for differentws, and (7) evaluate the scaling α as the slope of
F(w) versusw in a log-log plot:

F (w) =

√√√√ 1
N

N∑
n = 1

(S (n) − Sw (n))
2

(1)

2.5 DFA analysis of X(t) time series

Figure 2 shows a schematic for transforming data from operational

time (Y(n)) to event time (X(t)). Panel a of this figure shows some hypo-

thetical data points in trial time n, Y(n). In panel b, each of these data

points is transformed into a latency interval corresponding to the reac-

tion times in panel a, and in panel c, these latency intervals are filled
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with +1 or −1, chosen randomly, to create X(t). It is important to note

here that time intervals between trials (i.e., periods following responses

and preceding the next target onset) are disregarded. Thus, X(t) does

not reflect continuous time, but rather the concatenation of discrete

reaction time event times. The signal in panel c is then subjected to

DFA. The steps for DFA on X(t) are the same as explained for DFA on

Y(n) (replacing nwith t). Panel d shows the cumulative sum of the input

data in panel c (S(t)) as required in step (1) of the DFA. For real datasets

of reaction times, the reaction times were first rounded to three sig-

nificant digits (in ms), and the resulting X(t) time series (Figure 2, panel

c) was processed and using DFA the corresponding scaling index α cal-
culated. Notice that such a generated X(t) time series has a random

component (i.e., the sign of each duration time), so, we can make dif-

ferentX(t) time series. To considermany possibilities, for eachY(n) time

series, we ran DFA over 100 generated X(t) time series and evaluated

the average value of α.

2.6 Comparing the DFA of Y(n) and X(t)

Figure 3 shows the differences in the DFA graph when Y(n) time series

of an individual was used (left panels) versus the DFA graph on its

corresponding X(t) (right panels). The Y(n) were taken from a represen-

tative participant in one session (top panels) and across all six sessions

appended (bottom panels), in the low time-stress condition. As can be

seen in the figure, the DFA graph of the X(t) has fewer fluctuations and

amore extended power–law domain.

2.7 DFA on simulated reaction times with
different temporal complexity μ

To introduce the method used herein, and the relating temporal com-

plexity to scalingmeasuredbyDFA,weused simulateddata, temporally

complex, using turbulence intermittency as prescribed by Mannevil-

lleManneville (1980). To make the numerical generation of the events

faster, we adopted an idealized version of thismap in the followingway

(Buiatti et al., 1999): Each reaction timecanbecalculatedby transform-

ing the sequence yi of random numbers uniformly distributed in the

interval (0, 1) into the temporal sequence τi:

𝜏i = T
1

y

(
1

𝜇−1

)

i − 1

(2)

where μ (μ > 1) is the temporal scaling index of the generated time

series. The τs are generated by a hyperbolic PDF ψ(τ) defined by

𝜓 (𝜏) = (𝜇 − 1)
T(𝜇−1)

(𝜏 + T)
𝜇 (3)

which is properly normalized. The time constantTdefines the timenec-

essary to turnmicroscopic dynamics into a process with an evident IPL

index μ. For 1< μ< 3, this PDF represents a complex system, which is a

renewal process of CEs. For μ > 3, the dynamics falls into the region of

F IGURE 4 The detrended fluctuation analysis (DFA) of simulated
reaction time series. Each Y(n) is a simulated duration time generated
by the idealizedManneville map (Buiatti et al., 1999) with
corresponding temporal complexity index μ. The simulated Y(n) time
series used to generate the corresponding simulated X(t) time series
using the description of Figure 2. The length of the simulated
trajectories (X(t) time series) were chosen to be similar to the X(t)
dataset in the session level (blue line) and the appended sessions
(black line). The dotted red line is the linear fit (Equation 4). The dotted
green lines show an example of estimating the temporal complexity
index μ frommeasured α using DFA applied to the X(t) time series.

TABLE 2 Median and quantile (0.25 0.75) values by time-stress
condition

Variable Low High

Individual sessions

Errors of commission 0.17 (0.11 0.22) 0.33 (0.24 0.48)

α for Y(n) 0.62 (0.58 0.64) 0.62 (0.59 0.65)

α for X(t) 0.75 (0.72 0.78) 0.71 (0.68 0.72)

All sessions appended

Errors of commission 0.15 (0.08 0.28) 0.33 (0.19 0.50)

α for Y(n) 0.59 (0.51 0.65) 0.60 (0.52 0.66)

α for X(t) 0.75 (0.71 0.77) 0.69 (0.67 0.72)

normal statistics (Annunziato & Grigolini, 2000) and is no longer com-

plex. We take the set of τi generated by the Manneville map, with a

given scaling index μ, as the simulated reaction times Y(n) and create

the corresponding X(t) time series. The DFA was then used to pro-

cess the resulting X(t) time series generated using the prescription in

Figure 2.

Figure 4 shows the resulting relationship between the temporal

complexity index μ of the simulated time series and the scaling index

α evaluated using DFA analysis of the X(t) time series. The linear fit can

be approximated using

𝜇 = 4 − 2𝛼 (4)
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F IGURE 5 Left panel: scaling indices measured by detrended fluctuation analysis (DFA) analysis of the Y(n) time series of participants in high
(red dots) and low time-stress (black squares) conditions; right panel: scaling indices measured by DFA analysis of the X(t) time series of each
participant in high (red dots) and low time-stress (black squares) conditions. Paired data are sorted by indices in low time-stress condition in both
panels. Each data point is averaged over 100DFA analyses of the X(t) time series. Note the dispersion of red dots around black squares in the left
panel (Y(n)) versus the consistently lower red dots around black squares in the right panel (X(t)), highlighting the superiority of the latter in
differentiating scaling indices in the low versus high time-stress conditions.

So, this method is an indirect way of evaluating the temporal

complexity index μ of short time series.

2.8 Relation between α and 1/f-variability

Here we connect the scaling index α measured via DFA processing of

theX(t) time series to thepower–law indexof f−𝛽 variability. It is known

that the series of events created by the Manneville map with scaling

index μ has an IPL PDF (Lukovic &Grigolini, 2008):

S (f) ∝ f−𝛽 ∝ f−(3−𝜇). (5)

Substituting the relation between index given by Equation (4) into

this expression, we obtain

S (f) ∝ f−(2𝛼−1). (6)

So, only α= 1 corresponds to a perfect 1/f-noise.

2.9 Statistical analysis

Wilcoxon matched-pairs signed rank tests were applied to determine

whether errors of commission and values of the scaling index for the

two DFA analyses differed between low and high time-stress condi-

tions at each time scale. Separate linear regression analyses were also

applied using values of the scaling index (DFA processing of Y(n) and

X(t)) as predictors and errors of commission as response outcomes

under each condition and time scale todeterminewhether the strength

of the predictors differed between conditions.

3 RESULTS

3.1 Differences between time-stress conditions
for errors of commission and DFA scaling indices

Wilcoxonmatched-pairs signed rank tests applied to errors of commis-

sion and DFA scaling indices of Y(n) and X(t) time series for individual

sessions revealed statistically significant differences for errors of com-

mission (Z = −4.5560; p < .001) and X(t) (Z = 4.7821; p < .001), but

not for Y(n) (Z = −0.1954; p = .85). For all sessions appended, statis-

tically significant differences were observed for errors of commission

(Z = −9.3265; p < .001) and X(t) (Z = 11.0996; p < .001), but not for

Y(n) (Z=−0.3871; p= .70). Table 2 provides median and quantile (0.25

0.75) values for each dependent variable under each time-stress con-

dition. Figure 5 shows differences of scaling indices between low and

high time-stress conditions for the DFA analysis of Y(n) and X(t) time

series. The DFA analysis of the X(t) time series was able to categorize

the scaling indices of the two conditions, whereas Y(n) was not.

Next, we evaluated whether shuffling the reaction time series, Y(n),

prior to DFA analysis destroys the long-term correlations inherent in

the intact reaction time series and lowers scaling indices. Figure 6
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F IGURE 6 The left panel shows the results of applying detrended fluctuation analysis (DFA) to the Y(n) (black squares) and to shuffled Y(n) (red
dots). The right panel depicts the results of applying DFA to X(t) created from Y(n) (black squares) and to X(t) created form the shuffled Y(n) (red
dots).

TABLE 3 Regression analyses of Y(n) scaling indices predicting errors of commission

Coefficient Estimate SE t p Adj R2

Individual sessions

(Intercept) 0.27 0.21 1.32 .20

Beta low −0.14 0.34 −0.42 .68 −0.0293

(Intercept) 0.35 0.30 1.18 .25

Beta high 0.01 0.48 0.02 .99 −0.0357

All sessions appended

(Intercept) 0.18 0.06 3.02 .003

Beta low 0.02 0.10 0.19 .85 −0.00553

(Intercept) 0.35 0.09 3.73 .0003

Beta high 0.02 0.16 0.11 .92 −0.00585

compares the DFA applied to randomly shuffled Y(n) and their corre-

sponding X(t) time series. After shuffling, the DFA analysis of Y(n) time

series yielded scaling indices close to α = .5 (randomness), whereas

in the case of DFA analysis of the X(t) time series, created from the

shuffled Y(n), does not significantly change the scaling indices.

3.2 Regression analyses of DFA scaling indices for
predicting errors of commission

Regression analyses revealed that scaling indices derived from DFA

analysis of Y(n) time series was not a significant predictor of errors of

commission in either low or high time-stress conditions for either indi-

vidual sessions or all sessions appended (all p values>.05; see Table 3).

However, scaling indices derived from the DFA analysis of the X(t) time

serieswere all highly significant (all p values<.001; see Table 4). Higher

scaling indices were associated with lower errors of commission. Fur-

ther, the associations were stronger for data in the high versus low

time-stress condition.

Figures 7 and 8 show the probability of errors of commission ver-

sus scaling indices α, measured via the DFA processing of Y(n) and

X(t) datasets, respectively. In each figure, the top and bottom panels

correspond to the data of individual sessions and appended sessions,

respectively. Moreover, the left panels and right panels are data from

low and high time-stress conditions, respectively. As can be seen, the

DFA processing of Y(n) time series did not reveal any interdependence

between the errors of commission of the participants and their value

of scaling index (Figure 7). On the other hand, using DFA to process

the corresponding X(t), time series shows a clear trend; participants

with higher values of the scaling index have lower errors of commission

(Figure 8).

4 DISCUSSION

We developed and applied a new approach to measuring the scaling

index of reaction time series data using DFA, from a short, complex

cognitive-motor decision-making task. In this method, we consider
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TABLE 4 Regression analyses of X(t) scaling indices predicting errors of commission

Coeff Estimate SE t p Adj R2

Individual sessions

(Intercept) 1.24 0.17 7.32 8.83× 10−12

Beta low −1.41 0.23 −6.20 3.92× 10−9 0.177

(Intercept) 2.71 0.28 9.69 6.99× 10−18

Beta high −3.37 0.40 −8.42 1.67× 10−14 0.295

All sessions appended

(Intercept) 1.34 0.28 4.77 5.19× 10−5

Beta low −1.53 0.37 −4.11 3.17× 10−4 0.353

(Intercept) 2.96 0.57 5.16 1.81× 10−5

Beta high −3.71 0.82 −4.54 9.76× 10−5 0.403

F IGURE 7 The figures show the probability of errors of commission versus scaling indices of detrended fluctuation analysis (DFA) on Y(n)’s of
all sessions of all participants (top figures) and appended sessions of all the participants (bottom figures) for two cases of low (left figures) and high
time-stress conditions (right figures).

each reaction time as a duration time and create a secondary time

series X(t) by filling each time interval with fixed noise of magnitude

1 and a random sign and measured its scaling index using DFA. The

X(t) time series represents the rigidity/flexibility of the process. Using

the new method, we were able to show the existence of relations

between scaling indices and errors of commission, a measure of cogni-

tive flexibility (consistent with Simola et al., 2017), whereas traditional

DFA processing of Y(n) time series failed to show any such relation.
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F IGURE 8 The figures show the trend between the probability of errors of commission and scaling indices of detrended fluctuation analysis
(DFA) analysis on the X(t) time series of all sessions of all participants (top figures) and appended sessions of all the participants (bottom figures) for
two cases of low (left figures) and high time-stress conditions (right figures). Each data point is averaged over 100DFA on X(t)s.

Although Simola et al. (2017) observed IPL scaling of Y(n) time series

from a Go–NoGo task using autocorrelation functions, PSD, and DFA,

their task consisted of 1000 equally spaced trials and was presented

on a computer monitor requiring keyboard responses. These two

methodological differences (lower trial numbers and greater task com-

plexity) may account for whywe did not observe the hidden IPL scaling

ofY(n) time series in the present study. Further, the newmethodofDFA

processing of the transformed time series X(t) was able to discriminate

between low and high time-stress conditions, whereas the DFA analy-

sis of Y(n) time series was not. Our finding by applying DFA to X(t) time

series is also consistent with previous research, which has observed

higher scaling indices in Y(n) time series associated with lower task

demand or decreased task complexity with longer trial series (>1000;

Kello et al., 2007) (see also Delignieres et al., 2006).

The stronger negative relation between scaling indices and errors

of commission in the high time-stress condition suggests that under

higher time demand conditions (less time to complete tasks), it is ben-

eficial for the system to shift from a more ordered, predictable state

to a more disordered, unpredictable state. However, a shift too far in

the direction toward disorder results in the deterioration of inhibitory

control. Lower scaling indices in the high versus low time-stress condi-

tion suggest that behavior is more disordered or unpredictable (more

random) in the high time-stress condition, an effect that appears to be

environmentally coupled to the time constraints imposed by the task.

Together, these two findings support previous research suggesting that

system complexity is associated with greater degrees of freedom, thus

facilitating greater flexibility and adaptability of the system to inter-

nal and external perturbations or task demand conditions (Kello et al.,

2007; 2010; VanOrden et al., 2003, 2005;Wijnants et al., 2009).

Traditional DFA provides a method to quantify long-range corre-

lations in time series and to index repeating patterns over different

time scales (Peng et al., 1995). As our results reveal, randomly shuffling

the Y(n) time series destroys the temporal structure of the time series,

which results in scaling indices of approximately α = .5. However,

applying DFA to the X(t) of the shuffled Y(n) results in scaling indices

compatible with those obtained from the original X(t) time series. This

result suggests that the DFA analysis of the X(t) time series provides a

method for detecting CEs (i.e., renewal processes), the time intervals

of which between CE are uncorrelated (Turalska & West, 2018) but

cannot infer LRTC.
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The results of shuffling analysis show that theX(t) time series, unlike

the traditionally used Y(n) time series, is insensitive to the order of

the reaction times. In our experiment, the time intervals within ses-

sions were randomly distributed and there were longer time intervals

between sessions. Due to this property of the method, we could con-

catenate trials even when temporal distance between trials differed

significantly (e.g., between sessions). This made the method suitable

for even more realistic experimental and real-world conditions where

intervals between responses to stimuli may vary significantly. In other

words, the statistics of X(t) are renewal, and the time interval between

events are statistically independent of one another. Shuffling the Y(n)

will not change the statistics of its correspondingX(t), so theywill again

be an IPL with index μ.
Now we consider a second time series to which we apply DFA and

get a scaling index λ. But we know when we shuffle the time series, we

are going to obtain a different scaling index, say α, because the index λ
we obtained had to do with long-range correlations that are destroyed

whenweshuffle. If the second timeseries (before shuffling) is fractional

Gaussian noise then after shuffling, wewould obtain α= .5. However, if

the time series is mixed, we could obtain α= μ so that the shuffling acts
like a filter, and the deviation of α from0.5 is that part of themixed time

series that is renewal.

Wenote that themethodof subordination to ordinary diffusion pro-

posed by Sokolov (2000) to illustrate the popular theory of continuous

time random walk (Scher & Montroll, 1975) is widely adopted to gen-

erate the events that are the source of temporal complexity revealed

by the statistical analysis of experimental data. For instance, Turalska

and West (2018) used this theoretical interpretation to describe the

temporal complexity of individuals of a decision-making social system.

Subordination makes it possible to convert the fluctuations of data

that would not generate a departure from ordinary diffusion into rare

events yielding temporal complexity. Our newmethod is based on con-

verting the intensity (latency) of reaction times into the time intervals

between consecutive events. The time interval between consecutive

events is filled with either +1 or −1, tossing a fair coin (see panel c

of Figure 2). In Bologna (2020), this approach was used to illustrate

the anomalous diffusion properties of events, with a waiting-time PDF

known to be proportional to 1/τμ with τ denoting the time interval

between consecutive events. However, in this paper, the number of

reaction times available to us is not large enough to allow us to deter-

mine with precision the power law index μ from the distribution of the

reaction times. We have directly converted the reaction times in the

chronological order into a diffusion processwithout finding a deviation

from ordinary scaling. Quite surprisingly we found that the adoption of

the current model, used for the first time to the best of our knowledge,

to detect the complexity of the experimental fluctuations allows us to

evaluate with precision the parameter μ.

5 CONCLUSIONS

In this study, we introduce a novel conceptual and analytical frame-

work for estimating the complexityof behavioral time seriesdatabased

on CEs. Analyses of the X(t) time series, using DFA, we found a clear

classification of IPL scaling indices between low and high time-stress

conditions. We also found clear relations between IPL scaling indices

and errors of commission. Neither of these findings was observed for

the traditional DFA analysis of Y(n) time series. This new approach

was borne out of necessity due to the relatively short reaction time

series (360 trials over 8–10 min task durations), which has strong

implications for future research in cognitive science and neuroscience

experiments, where task durations may be relatively short and where

data are collected intermittently within and across recording sessions.
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