22 research outputs found

    Spectrum simulation of rough and nanostructured targets from their 2D and 3D image by Monte Carlo methods

    Get PDF
    Corteo is a program that implements Monte Carlo (MC) method to simulate ion beam analysis (IBA) spectra of several techniques by following the ions trajectory until a sufficiently large fraction of them reach the detector to generate a spectrum. Hence, it fully accounts for effects such as multiple scattering (MS). Here, a version of Corteo is presented where the target can be a 2D or 3D image. This image can be derived from micrographs where the different compounds are identified, therefore bringing extra information into the solution of an IBA spectrum, and potentially significantly constraining the solution. The image intrinsically includes many details such as the actual surface or interfacial roughness, or actual nanostructures shape and distribution. This can for example lead to the unambiguous identification of structures stoichiometry in a layer, or at least to better constraints on their composition. Because MC computes in details the trajectory of the ions, it simulates accurately many of its aspects such as ions coming back into the target after leaving it (re-entry), as well as going through a variety of nanostructures shapes and orientations. We show how, for example, as the ions angle of incidence becomes shallower than the inclination distribution of a rough surface, this process tends to make the effective roughness smaller in a comparable 1D simulation (i.e. narrower thickness distribution in a comparable slab simulation). Also, in ordered nanostructures, target re-entry can lead to replications of a peak in a spectrum. In addition, bitmap description of the target can be used to simulate depth profiles such as those resulting from ion implantation, diffusion, and intermixing. Other improvements to Corteo include the possibility to interpolate the cross-section in angle-energy tables, and the generation of energy-depth maps.CRSNG, FRQ-N

    Evolution of the potential-energy surface of amorphous silicon

    Full text link
    The link between the energy surface of bulk systems and their dynamical properties is generally difficult to establish. Using the activation-relaxation technique (ART nouveau), we follow the change in the barrier distribution of a model of amorphous silicon as a function of the degree of relaxation. We find that while the barrier-height distribution, calculated from the initial minimum, is a unique function that depends only on the level of distribution, the reverse-barrier height distribution, calculated from the final state, is independent of the relaxation, following a different function. Moreover, the resulting gained or released energy distribution is a simple convolution of these two distributions indicating that the activation and relaxation parts of a the elementary relaxation mechanism are completely independent. This characterized energy landscape can be used to explain nano-calorimetry measurements.Comment: 5 pages, 4 figure

    Computer Simulation of Ion Beam Analysis: Possibilities and Limitations

    Full text link
    Quantitative application of ion beam analysis methods, such as Rutherford backscat- tering, elastic recoil detection analysis, and nuclear reaction analysis, requires the use of computer simulation codes. The different types of available codes are pre- sented, and their advantages and weaknesses with respect to underlying physics and computing time requirements are discussed. Differences between different codes of the same type are smaller by about one order of magnitude than the uncertainty of basic input data, especially stopping power and cross section data. Even very com- plex sample structures with elemental concentration variations with depth or lat- erally varying structures can be simulated quantitatively. Laterally inhomogeneous samples generally result in an ambiguity with depth profiles. The optimization of ion beam analysis measurements is discussed, and available tools are presented

    Hydrogen analysis depth calibration by CORTEO Monte-Carlo simulation

    Full text link
    Hydrogen imaging with sub-μm lateral resolution and sub-ppm sensitivity has become possible with coincident proton–proton (pp) scattering analysis (Reichart et al., 2004). Depth information is evaluated from the energy sum signal with respect to energy loss of both protons on their path through the sample. In first order, there is no angular dependence due to elastic scattering. In second order, a path length effect due to different energy loss on the paths of the protons causes an angular dependence of the energy sum. Therefore, the energy sum signal has to be de-convoluted depending on the matrix composition, i.e. mainly the atomic number Z, in order to get a depth calibrated hydrogen profile. Although the path effect can be calculated analytically in first order, multiple scattering effects lead to significant deviations in the depth profile. Hence, in our new approach, we use the CORTEO Monte-Carlo code (Schiettekatte, 2008) in order to calculate the depth of a coincidence event depending on the scattering angle. The code takes individual detector geometry into account. In this paper we show, that the code correctly reproduces measured pp-scattering energy spectra with roughness effects considered. With more than 100 μm thick Mylar-sandwich targets (Si, Fe, Ge) we demonstrate the deconvolution of the energy spectra on our current multistrip detector at the microprobe SNAKE at the Munich tandem accelerator lab. As a result, hydrogen profiles can be evaluated with an accuracy in depth of about 1% of the sample thickness

    Critical process temperatures for resistive InGaAsP/InP heterostructures heavily implanted by Fe or Ga ions

    Full text link
    We report on critical ion implantation and rapid thermal annealing (RTA) process temperatures that produce resistive Fe- or Ga-implanted InGaAsP/InP heterostructures. Two InGaAsP/InP heterostructure compositions, with band gap wavelengths of 1.3 μm and 1.57 μm, were processed by ion implantation sequences done at multiple MeV energies and high fluence (1015 cm−2). The optimization of the fabrication process was closely related to the implantation temperature which influences the type of implant-induced defect structures. With hot implantation temperatures, at 373 K and 473 K, X-ray diffraction (XRD) revealed that dynamic defect annealing was strong and prevented the amorphization of the InGaAsP layers. These hot-implanted layers were less resistive and RTA could not optimize them systematically in favor of high resistivity. With cold implantation temperatures, at 83 K and even at 300 K, dynamic annealing was minimized. Damage clusters could form and accumulate to produce resistive amorphous-like structures. After recrystallization by RTA, polycrystalline signatures were found on every low-temperature Fe- and Ga-implanted structures. For both ion species, electrical parameters evolved similarly against annealing temperatures, and resistive structures were produced near 500 °C. However, better isolation was obtained with Fe implantation. Differences in sheet resistivities between the two alloy compositions were less than band gap-related effects. These observations, related to damage accumulation and recovery mechanisms, have important implications for the realization ion-implanted resistive layers that can be triggered with near infrared laser pulses and suitable for ultrafast optoelectronics

    Replenish and relax: explaining logarithmic annealing in disordered materials

    Full text link
    Fatigue and aging of materials are, in large part, determined by the evolution of the atomic-scale structure in response to strains and perturbations. This coupling between microscopic structure and long time scales remains one of the main challenges in materials study. Focusing on a model system, ion-damaged crystalline silicon, we combine nanocalorimetric experiments with an off-lattice kinetic Monte Carlo simulation to identify the atomistic mechanisms responsible for the structural relaxation over long time scales. We relate the logarithmic relaxation, observed in a number of systems, with heat-release measurements. The microscopic mechanism associated with logarithmic relaxation can be described as a two-step replenish and relax process. As the system relaxes, it reaches deeper energy states with logarithmically growing barriers that need to be unlocked to replenish the heat-releasing events leading to lower energy configurations

    Engineering visible light emitting point defects in Zr-implanted polycrystalline AlN films

    Full text link
    We have investigated the impact of thermal annealing gaseous atmosphere of argon, nitrogen, and forming gas on the structural and optical properties of thin polycrystalline AlN films subjected to high-energy zirconium ions implantation. X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and atomic force microscopy measurements show that the structural and morphological properties of the Zr-implanted AlN films depend on the annealing gaseous environment. Post-implantation annealing under argon atmosphere yields the lowest structured surface roughness with increased grain size. Photoluminescence spectroscopy revealed multiple point defects and defect complexes related emission bands in the visible range. A series of absorption bands have been observed using photoluminescence excitation spectroscopy. The origin of the emission or absorption bands is identified and attributed to various types of point defects and defect complexes, theoretically reported for AlN. New emission and absorption peaks at 1.7eV (730nm) and 2.6eV (466nm), respectively, have been identified and attributed to the (ZrAl–VN)0 defect complexes

    In-plasma analysis of plasma–surface interactions

    Full text link
    During deposition, modification, and etching of thin films and nanomaterials in reactive plasmas, many active species can interact with the sample simultaneously. This includes reactive neutrals formed by fragmentation of the feed gas, positive ions, and electrons generated by electron-impact ionization of the feed gas and fragments, excited states (in particular, long-lived metastable species), and photons produced by spontaneous de-excitation of excited atoms and molecules. Notably, some of these species can be transiently present during the different phases of plasma processing, such as etching of thin layer deposition. To monitor plasma–surface interactions during materials processing, a new system combining beams of neutral atoms, positive ions, UV photons, and a magnetron plasma source has been developed. This system is equipped with a unique ensemble of in-plasma surface characterization tools, including (1) a Rutherford Backscattering Spectrometer (RBS), (2) an Elastic Recoil Detector (ERD), and (3) a Raman spectroscopy system. RBS and ERD analyses are carried out using a differentially pumped 1.7 MV ion beam line Tandetron accelerator generating a beam at grazing incidence. The ERD system is equipped with an absorber and is specifically used to detect H initially bonded to the surface; higher resolution of surface H is also available through nuclear reaction analysis. In parallel, an optical port facing the substrate is used to perform Raman spectroscopy analysis of the samples during plasma processing. This system enables fast monitoring of a few Raman peaks over nine points scattered on a 1.6 × 1.6 mm2 surface without interference from the inherent light emitted by the plasma. Coupled to the various plasma and beam sources, the unique set of in-plasma surface characterization tools detailed in this study can provide unique time-resolved information on the modification induced by plasma. By using the ion beam analysis capability, the atomic concentrations of various elements in the near-surface (e.g., stoichiometry and impurity content) can be monitored in real-time during plasma deposition or etching. On the other hand, the evolution of Raman peaks as a function of plasma processing time can contribute to a better understanding of the role of low-energy ions in defect generation in irradiation-sensitive materials, such as monolayer graphene

    Zirconia-titania-doped tantala optical coatings for low mechanical loss Bragg mirrors

    Full text link
    The noise caused by internal mechanical dissipation in the high refractive index amorphous thin films in dielectric mirrors is an important limitation for gravitational wave detection. The objective of this study is to decrease this noise spectral density, which is linearly dependent on such dissipation and characterized by the loss angle of the Young’s modulus, by adding zirconia to titania-doped tantala, from which the current mirrors for gravitational wave detection are made. The purpose of adding zirconia is to raise the crystallization temperature, which allows the material to be more relaxed by raising the practical annealing temperature. The Ta, Ti and Zr oxides are deposited by reactive magnetron sputtering in an Ar:O2 atmosphere using radio-frequency and high power impulse plasma excitation. We show that thanks to zirconia, the crystallization temperature rises by more than 150◦C, which allows one to obtain a loss angle of 2.5 × 10−4 , that is, a decrease by a factor of 1.5 compared to the current mirror high-index layers. However, due to a difference in the coefficient of thermal expansion between the thin film and the silica substrate, cracks appear at high annealing temperature. In response, a silica capping layer is applied to increase the temperature of crack formation by 100◦C

    Titania mixed with silica: a low thermal-noise coating material for gravitational-wave detectors

    Get PDF
    Coating thermal noise is one of the dominant noise sources in current gravitational wave detectors and ultimately limits their ability to observe weaker or more distant astronomical sources. This Letter presents investigations of TiO2 mixed with SiO2 (TiO2:SiO2) as a coating material. We find that, after heat treatment for 100 h at 850 °C, thermal noise of a highly reflective coating comprising of TiO2:SiO2 and SiO2 reduces to 76% of the current levels in the Advanced LIGO and Advanced Virgo detectors—with potential for reaching 45%, if we assume the mechanical loss of state-of-the-art SiO2 layers. Furthermore, those coatings show low optical absorption of <1  ppm and optical scattering of ≲5  ppm. Notably, we still observe excellent optical and thermal noise performance following crystallization in the coatings. These results show the potential to meet the parameters required for the next upgrades of the Advanced LIGO and Advanced Virgo detectors
    corecore