53 research outputs found
IVOA Recommendation: VOTable Format Definition Version 1.3
This document describes the structures making up the VOTable standard. The
main part of this document describes the adopted part of the VOTable standard;
it is followed by appendices presenting extensions which have been proposed
and/or discussed, but which are not part of the standard
IVOA Recommendation: An IVOA Standard for Unified Content Descriptors Version 1.1
This document describes the current understanding of the IVOA controlled
vocabulary for describing astronomical data quantities, called Unified Content
Descriptors (UCDs).
The present document defines a new standard (named UCD1+) improving the first
generation of UCDs (hereafter UCD1). The basic idea is to adopt a new syntax
and vocabulary requiring little effort for people to adapt softwares already
using UCD1.
This document also addresses the questions of maintenance and evolution of
the UCD1+. Examples of use cases within the VO, and tools for using UCD1+ are
also described
The spike gene is a major determinant for the SARS-CoV-2 Omicron-BA.1 phenotype.
Variant of concern (VOC) Omicron-BA.1 has achieved global predominance in early 2022. Therefore, surveillance and comprehensive characterization of Omicron-BA.1 in advanced primary cell culture systems and animal models are urgently needed. Here, we characterize Omicron-BA.1 and recombinant Omicron-BA.1 spike gene mutants in comparison with VOC Delta in well-differentiated primary human nasal and bronchial epithelial cells in vitro, followed by in vivo fitness characterization in hamsters, ferrets and hACE2-expressing mice, and immunized hACE2-mice. We demonstrate a spike-mediated enhancement of early replication of Omicron-BA.1 in nasal epithelial cultures, but limited replication in bronchial epithelial cultures. In hamsters, Delta shows dominance over Omicron-BA.1, and in ferrets Omicron-BA.1 infection is abortive. In hACE2-knock-in mice, Delta and a Delta spike clone also show dominance over Omicron-BA.1 and an Omicron-BA.1 spike clone, respectively. Interestingly, in naïve K18-hACE2 mice, we observe Delta spike-mediated increased replication and pathogenicity and Omicron-BA.1 spike-mediated reduced replication and pathogenicity, suggesting that the spike gene is a major determinant of replication and pathogenicity. Finally, the Omicron-BA.1 spike clone is less well-controlled by mRNA-vaccination in K18-hACE2-mice and becomes more competitive compared to the progenitor and Delta spike clones, suggesting that spike gene-mediated immune evasion is another important factor that led to Omicron-BA.1 dominance
The spike gene is a major determinant for the SARS-CoV-2 Omicron-BA. 1 phenotype
Variant of concern (VOC) Omicron-BA.1 has achieved global predominance in early 2022. Therefore, surveillance and comprehensive characterization of Omicron-BA.1 in advanced primary cell culture systems and animal models are urgently needed. Here, we characterize Omicron-BA.1 and recombinant Omicron-BA.1 spike gene mutants in comparison with VOC Delta in well-differentiated primary human nasal and bronchial epithelial cells in vitro, followed by in vivo fitness characterization in hamsters, ferrets and hACE2-expressing mice, and immunized hACE2-mice. We demonstrate a spike-mediated enhancement of early replication of Omicron-BA.1 in nasal epithelial cultures, but limited replication in bronchial epithelial cultures. In hamsters, Delta shows dominance over Omicron-BA.1, and in ferrets Omicron-BA.1 infection is abortive. In hACE2-knock-in mice, Delta and a Delta spike clone also show dominance over Omicron-BA.1 and an Omicron-BA.1 spike clone, respectively. Interestingly, in naïve K18-hACE2 mice, we observe Delta spike-mediated increased replication and pathogenicity and Omicron-BA.1 spike-mediated reduced replication and pathogenicity, suggesting that the spike gene is a major determinant of replication and pathogenicity. Finally, the Omicron-BA.1 spike clone is less well-controlled by mRNA-vaccination in K18-hACE2-mice and becomes more competitive compared to the progenitor and Delta spike clones, suggesting that spike gene-mediated immune evasion is another important factor that led to Omicron-BA.1 dominance
Units in the VO
This document describes a recommended syntax for writing the string representation of unit labels ("VOUnits"). In addition, it describes a set of recognised and deprecated units, which is as far as possible consistent with other relevant standards (BIPM, ISO/IEC and the IAU). The intention is that units written to conform to this specification will likely also be parsable by other well-known parsers. To this end, we include machine-readable grammars for other units syntaxes
The Xer activation factor of TLCΦ expands the possibilities for Xer recombination
ABSTRACT Many mobile elements take advantage of the highly-conserved chromosome dimer resolution system of bacteria, Xer. They participate in the transmission of antibiotic resistance and pathogenicity determinants. In particular, the toxin-linked cryptic satellite phage (TLCΦ) plays an essential role in the continuous emergence of new toxigenic clones of the Vibrio cholerae strain at the origin of the ongoing 7 th cholera pandemic. The Xer machinery is composed of two chromosomally-encoded tyrosine recombinases, XerC and XerD. They resolve chromosome dimers by adding a crossover between sister copies of a specific 28 base pair site of bacterial chromosomes, dif . The activity of XerD depends on a direct contact with a cell division protein, FtsK, which spatially and temporally constrains the process. TLCΦ encodes for a XerD-activation factor (XafT), which drives the integration of the phage into the dif site of the primary chromosome of V. cholerae independently of FtsK. However, XerD does not bind to the attachment site ( attP ) of TLCΦ, which raised questions on the integration process. Here, we compared the integration efficiency of thousands of synthetic mini-TLCΦ plasmids harbouring different attP sites and assessed their stability in vivo . In addition, we compared the efficiency with which XafT and the XerD activation domain of FtsK drive recombination reactions in vitro . Taken together, our results suggest that XafT promotes the formation of synaptic complexes between canonical Xer recombination sites and imperfect sites
The UCD1+ controlled vocabulary Version 1.3 Version 1.3
This document describes the list of controlled terms used to build the Unified Content Descriptors, Version 1+ (UCD1+). The document describing the UCD1+ can be found at the URL: www.ivoa.net/Documents/latest/UCD.html. This document reviews the structure of the UCD1+ and presents the current vocabulary. This version contains new UCD words for the planetary data community as proposed in the Technical Note by Cecconi et al. [3]. The suggested list of line labels under the em.line branch is not included. A general solution is currently under study to deal with lists of element instances such spectral lines, chemical elements, elementary particles, etc. using either utypes or a vocabulary
- …