152 research outputs found

    Adolescent Resting State Networks and Their Associations with Schizotypal Trait Expression

    Get PDF
    The rising interest in temporally coherent brain networks during baseline adult cerebral activity finds convergent evidence for an identifiable set of resting state networks (RSNs). To date, little is know concerning the earlier developmental stages of functional connectivity in RSNs. This study's main objective is to characterize the RSNs in a sample of adolescents. We further examine our data from a developmental psychopathology perspective of psychosis-proneness, by testing the hypothesis that early schizotypal symptoms are linked to disconnection in RSNs. In this perspective, this study examines the expression of adolescent schizotypal traits and their potential associations to dysfunctional RSNs. Thirty-nine adolescents aged between 12 and 20 years old underwent an 8-min functional magnetic resonance imaging (fMRI) “resting state” session. In order to explore schizotypal trait manifestations, the entire population was assessed by the Schizotypal Personality Questionnaire (SPQ). After conventional processing of the fMRI data, we applied group-level independent component analysis (ICA). Twenty ICA maps and associated time courses were obtained, among which there were RSNs that are consistent with findings in the literature. We applied a regression analysis at group level between the energy of RSN-associated time courses in different temporal frequency bins and the clinical measures (3 in total). Our results highlight the engagement of six relevant RSNs; (1) a default-mode network (DMN); (2) a dorso-lateral attention network; (3) a visual network (VN); (4) an auditory network (AN); (5) a sensory motor network (SMN); (6) a self-referential network (SRN). The regression analysis reveals a statistically significant correlation between the clinical measures and some of the RSNs, specifically the visual and the AN. In particular, a positive correlation is obtained for the VN in the low frequency range (0.05 Hz) with SPQ measures, while the AN correlates negatively in the high frequency range (0.16–0.19 Hz). Trend-like significance for the SRN may hint to its implication in disorganized thoughts and behaviors during adolescence. Unlike DMN activity in schizophrenic patients, adolescent DMN was unrelated to schizotypal trait expression. This suggests that relationships between the DMN and schizotypy may be modified in later developmental stages of both functional connectivity and psychotic expression. These results are discussed in light of RSNs literature involving children, adults, and individuals with schizophrenia

    fMRI Evidence for Activation of Multiple Cortical Regions in the Primary Auditory Cortex of Deaf Subjects Users of Multichannel Cochlear Implants

    Get PDF
    To investigate the activation of the auditory cortex by fMRI, three deaf subjects users of the Ineraid cochlear implant participated in our study. Possible interference between fMRI acquisition and the implanted electrodes was controlled and safe experimental conditions were obtained. For each subject, electrical stimuli were applied on different intracochlear electrodes, in monopolar mode. Stimulation of each electrode was actually producing auditory sensations of different pitches, as demonstrated by psychophysical pitch-ranking measurements in the same subjects. Because deaf subjects did not hear scanner noise, the data were collected in ‘silent background' conditions, i.e. as a result of pure auditory sensations. Functional maps showed activation of the primary auditory cortex, predominantly in the left hemisphere. Stimulation of each different intracochlear electrode revealed different clusters of activation. After cluster grouping, at least three regions have been identified in the auditory cortex of each subject, and comparisons with previous architectonic and functional studies are proposed. However, a tonotopic organization could not be clearly identified within each region. These arguments, obtained without interference with unwanted scanner noise, plead in favor of a functional subdivision of the primary auditory cortex into multiple cortical regions in cochlear implant user

    Degree of Musical Expertise Modulates Higher Order Brain Functioning

    Get PDF
    Using functional magnetic resonance imaging, we show for the first time that levels of musical expertise stepwise modulate higher order brain functioning. This suggests that degree of training intensity drives such cerebral plasticity. Participants (non-musicians, amateurs, and expert musicians) listened to a comprehensive set of specifically composed string quartets with hierarchically manipulated endings. In particular, we implemented 2 irregularities at musical closure that differed in salience but were both within the tonality of the piece (in-key). Behavioral sensitivity scores (dâ€Č) of both transgressions perfectly separated participants according to their level of musical expertise. By contrasting brain responses to harmonic transgressions against regular endings, functional brain imaging data showed compelling evidence for stepwise modulation of brain responses by both violation strength and expertise level in a fronto-temporal network hosting universal functions of working memory and attention. Additional independent testing evidenced an advantage in visual working memory for the professionals, which could be predicted by musical training intensity. The here introduced findings of brain plasticity demonstrate the progressive impact of musical training on cognitive brain functions that may manifest well beyond the field of music processin

    Language Control and Lexical Competition in Bilinguals: An Event-Related fMRI Study

    Get PDF
    Language selection (or control) refers to the cognitive mechanism that controls which language to use at a given moment and context. It allows bilinguals to selectively communicate in one target language while minimizing the interferences from the nontarget language. Previous studies have suggested the participation in language control of different brain areas. However, the question remains whether the selection of one language among others relies on a language-specific neural module or general executive regions that also allow switching between different competing behavioral responses including the switching between various linguistic registers. In this functional magnetic resonance imaging study, we investigated the neural correlates of language selection processes in German-French bilingual subjects during picture naming in different monolingual and bilingual selection contexts. We show that naming in the first language in the bilingual context (compared with monolingual contexts) increased activation in the left caudate and anterior cingulate cortex. Furthermore, the activation of these areas is even more extended when the subjects are using a second weaker language. These findings show that language control processes engaged in contexts during which both languages must remain active recruit the left caudate and the anterior cingulate cortex (ACC) in a manner that can be distinguished from areas engaged in intralanguage task switchin

    Musical training intensity yields opposite effects on grey matter density in cognitive versus sensorimotor networks

    Get PDF
    Using optimized voxel-based morphometry, we performed grey matter density analyses on 59 age-, sex- and intelligence-matched young adults with three distinct, progressive levels of musical training intensity or expertise. Structural brain adaptations in musicians have been repeatedly demonstrated in areas involved in auditory perception and motor skills. However, musical activities are not confined to auditory perception and motor performance, but are entangled with higher-order cognitive processes. In consequence, neuronal systems involved in such higher-order processing may also be shaped by experience-driven plasticity. We modelled expertise as a three-level regressor to study possible linear relationships of expertise with grey matter density. The key finding of this study resides in a functional dissimilarity between areas exhibiting increase versus decrease of grey matter as a function of musical expertise. Grey matter density increased with expertise in areas known for their involvement in higher-order cognitive processing: right fusiform gyrus (visual pattern recognition), right mid orbital gyrus (tonal sensitivity), left inferior frontal gyrus (syntactic processing, executive function, working memory), left intraparietal sulcus (visuo-motor coordination) and bilateral posterior cerebellar Crus II (executive function, working memory) and in auditory processing: left Heschl's gyrus. Conversely, grey matter density decreased with expertise in bilateral perirolandic and striatal areas that are related to sensorimotor function, possibly reflecting high automation of motor skills. Moreover, a multiple regression analysis evidenced that grey matter density in the right mid orbital area and the inferior frontal gyrus predicted accuracy in detecting fine-grained incongruities in tonal music

    Brain Microstructure assessed by CHARMED and NODDI in the newborn

    Get PDF
    DTI, may be the only feasible technique to study micorstructural changes occurring during the brain development. The main aims of this study was to design a complete new pipeline to perform micro-structural diffusion analysis in neonatal brain and to compare DTI to CHARMED and NODDI, which provides new microstructural metrics such as the intra-cellular volume fraction (nic) and the orientation dispersion index (ODI). High quality subject template was generated using DTI-TK tensor registration tools, which allows the accurate definitions of 13 ROIs. FA, nic and ODI were able to depict fine microstructural differences in early maturation fiber tracts

    Seeing the phantom: a functional magnetic resonance imaging study of a supernumerary phantom limb

    Get PDF
    OBJECTIVE: Supernumerary phantom limb (SPL) is a rare neurological manifestation where patients with a severe stroke-induced sensorimotor deficit experience the illusory presence of an extra limb that duplicates a real one. The illusion is most often experienced as a somesthetic phantom, but rarer SPLs may be intentionally triggered or seen. Here, we report the case of a left visual, tactile, and intentional SPL caused by right subcortical damage in a nondeluded woman. METHODS: Using functional magnetic resonance imaging, we investigated the multimodal nature of this phantom, which the patient claimed to be able see, use, and move intentionally. The patient participated in a series of sensorimotor and motor imagery tasks involving the right, the left plegic, and the SPL's hand. RESULTS: Right premotor and motor regions were engaged when she imagined that she was scratching her left cheek with her left plegic hand, whereas when she performed the same task with the SPL, additional left middle occipital areas were recruited. Moreover, comparison of responses induced by left cheek (subjectively feasible) versus right cheek scratching (reportedly unfeasible movement) with the SPL demonstrated significant activation in right somesthetic areas. INTERPRETATION: These findings demonstrate that intentional movements of a seen and felt SPL activate premotor and motor areas together with visual and sensory cortex, confirming its multimodal dimension and the reliability of the patient's verbal reports. This observation, interpreted for cortical deafferentation/disconnection caused by subcortical brain damage, constitutes a new but theoretically predictable entity among disorders of bodily awareness

    Visual recovery after perinatal stroke evidenced by functional and diffusion MRI: case report

    Get PDF
    BACKGROUND: After perinatal brain injury, clinico-anatomic correlations of functional deficits and brain plasticity remain difficult to evaluate clinically in the young infant. Thus, new non-invasive methods capable of early functional diagnosis are needed in young infants. CASE PRESENTATION: The visual system recovery in an infant with perinatal stroke is assessed by combining diffusion tensor imaging (DTI) and event-related functional MRI (ER-fMRI). All experiments were done at 1.5T. A first DTI experiment was performed at 12 months of age. At 20 months of age, a second DTI experiment was performed and combined with an ER-fMRI experiment with visual stimuli (2 Hz visual flash). At 20 months of age, ER-fMRI showed significant negative activation in the visual cortex of the injured left hemisphere that was not previously observed in the same infant. DTI maps suggest recovery of the optic radiation in the vicinity of the lesion. Optic radiations in the injured hemisphere are more prominent in DTI at 20 months of age than in DTI at 12 months of age. CONCLUSION: Our data indicate that functional cortical recovery is supported by structural modifications that concern major pathways of the visual system. These neuroimaging findings might contribute to elaborate a pertinent strategy in terms of diagnosis and rehabilitation

    Project 182658 kidney results

    No full text
    AbstractProject 182658 ex-vivo kidney analysis, including MRI, 31P-MRSI, histolog
    • 

    corecore