879 research outputs found

    Groundbased observational campaigns of NEAs

    No full text
    International audienceNEAs observation are important and circumscribe several scientific objectives such are: i) discovery of new objects; ii) confirmation of NEAs newly discovered; iii) secure large uncertainties orbits of NEAs; iv) shape determination from lightcurve analysis; v) scientific interest of specific objects potentially targets of "in-situ" investigations

    Comparing ICP variants on real-world data sets: Open-source library and experimental protocol

    Get PDF
    Many modern sensors used for mapping produce 3D point clouds, which are typically registered together using the iterative closest point (ICP) algorithm. Because ICP has many variants whose performances depend on the environment and the sensor, hundreds of variations have been published. However, no comparison frameworks are available, leading to an arduous selection of an appropriate variant for particular experimental conditions. The first contribution of this paper consists of a protocol that allows for a comparison between ICP variants, taking into account a broad range of inputs. The second contribution is an open-source ICP library, which is fast enough to be usable in multiple real-world applications, while being modular enough to ease comparison of multiple solutions. This paper presents two examples of these field applications. The last contribution is the comparison of two baseline ICP variants using data sets that cover a rich variety of environments. Besides demonstrating the need for improved ICP methods for natural, unstructured and information-deprived environments, these baseline variants also provide a solid basis to which novel solutions could be compared. The combination of our protocol, software, and baseline results demonstrate convincingly how open-source software can push forward the research in mapping and navigatio

    Asteroid (99942) Apophis: new predictions of Earth encounters for this potentially hazardous asteroid

    No full text
    Reproduced with permission. Copyright ESO.International audienceContext. The potentially hazardous asteroid (99942) Apophis, previously designated 2004 MN4, is emblematic of the study of asteroids that could impact the Earth in the near future. Orbit monitoring and error propagation analysis are mandatory to predict the probability of an impact and, furthermore, its possible mitigation. Several aspects for this prediction have to be investigated, in particular the orbit adjustment and prediction updates when new astrometric data are available. Aims: We analyze Apophis orbit and provide impact predictions based on new observational data, including several orbit propagations. Methods: New astrometric data of Apophis have been acquired at the Pic du Midi one-meter telescope (T1m) during March 2011. Indeed, this asteroid was again visible from ground-based stations after a period of several years of unfavorable conjunction with the Sun. We present here the original astrometric data and reduction, and the new orbit obtained from the adjustment to all data available at Minor Planet Center (until March 2011). Results: We present a new sketch of keyholes and impacts for the next century. Additionally, we discuss observational errors, astrometric reduction, orbit adjustment, and adequacy of the dynamical model used. Based on observations made at Pic du Midi station and data from IAU-MPC

    Updated orbit of Apophis with recent observations

    No full text
    International audienceAsteroid Apophis (previously designed 2004 MN4) was first discovered in June 2004. From its first observations, Apophis was revealed to be a special study case in as much as, it reached the level 4 of Torino scale with a high probability of collision in 2029. New observations eliminated all danger for 2029. But, because of a deep close encounter in 2029 (˜38000 km), the asteroid will be put on a chaotic-like orbit and some risks of collision in 2036 occur if the asteroid goes through a very small region called keyhole. Now, its orbit is quite well known and thanks to additional observations, the risk for the short term seems to disappear. But what about the long term? As far as the Earth-impact threat study is concerned, the deep 2029-close encounter is an opportunity for space missions towards Apophis. With our technologies, to deflect an asteroid, we can only act from the source. Many deflection missions were studied, from the hardest (nuclear weapons), to the softest (shadow mission). But in order to prepare such missions, we have to be sure that the asteroid is really on an impact trajectory. Moreover, if it is the case, we have to be sure that it won't be put on the trajectory of other keyholes. To this aim, we need a good knowledge of the 2029 region uncertainty and we will analyse the impact of the new observations of March 2011

    ODIN: a new model and ephemeris for the Pluto system

    No full text
    Reproduced with permission. Copyright ESO. The original publication is available at www.aanda.org.International audienceBecause of Pluto's distance from the Sun, the Pluto system has not yet completed a revolution since its discovery, hence an uncertain heliocentric distance. In this paper, we present the fitting of our dynamical model ODIN (Orbite, Dynamique et Intégration Numérique) to observations. The small satellites P4 and P5 are not taken into account. We fitted our model to the measured absolute coordinates (RA, DEC) of Pluto, and to the measured positions of the satellites relative to Pluto. The masses we found for the bodies of the system are consistent with those of previous studies. Yet the masses of the small satellites Nix and Hydra are artificially constrained by the number of observations of Charon. The best way to improve the determination of their masses would be to use observations of P4 and P5, but there are still not enough published observations. Concerning the heliocentric distance of the system, we compared the value we obtained using ODIN and those of other models. The difference between the models far exceeds the uncertainty needed (about 1000 km) for the mission New Horizons. A new astrometric reduction of old photographic plates may be an efficient way to constrain this distance. The ephemeris for Pluto's satellites is available on the web page of the IMCCE at http://www.imcce.fr/hosted_sites/saimirror/nssreq9hf.htm. The complete version of the ephemeris is available as a SPICE kernel at http://www.imcce.fr/~beauvalet/. Appendices A and B are available in electronic form at http://www.aanda.orgTable A.2 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/553/A1
    • …
    corecore