46 research outputs found
Age constraints and fine tuning in variable-mass particle models
VAMP (variable-mass particles) scenarios, in which the mass of the cold dark
matter particles is a function of the scalar field responsible for the present
acceleration of the Universe, have been proposed as a solution to the cosmic
coincidence problem, since in the attractor regime both dark energy and dark
matter scale in the same way. We find that only a narrow region in parameter
space leads to models with viable values for the Hubble constant and dark
energy density today. In the allowed region, the dark energy density starts to
dominate around the present epoch and consequently such models cannot solve the
coincidence problem. We show that the age of the Universe in this scenario is
considerably higher than the age for noncoupled dark energy models, and
conclude that more precise independent measurements of the age of the Universe
would be useful in distinguishing between coupled and noncoupled dark energy
models.Comment: 7 pages, 8 figures, matches the Phys. Rev. D published versio
Tracking Quintessence and Cold Dark Matter Candidates
We study the generation of a kination-dominated phase in the context of a
quintessential model with an inverse-power-law potential and a Hubble-induced
mass term for the quintessence field. The presence of kination is associated
with an oscillating evolution of the quintessence field and the barotropic
index. We find that, in sizeable regions of the parameter space, a tracker
scaling solution can be reached sufficiently early to alleviate the coincidence
problem. Other observational constraints originating from nucleosynthesis, the
inflationary scale, the present acceleration of the universe and the
dark-energy-density parameter can be also met. The impact of this modified
kination-dominated phase on the thermal abundance of cold dark matter
candidates is investigated too. We find that: (i) the enhancement of the relic
abundance of the WIMPs with respect to the standard paradigm, crucially depends
on the hierarchy between the freeze-out temperature and the temperature at
which the extrema in the evolution of the quintessence field are encountered,
and (ii) the relic abundance of e-WIMPs takes its present value close to the
temperature at which the earliest extremum of the evolution of the quintessence
field occurs and, as a consequence, both gravitinos and axinos arise as natural
cold dark matter candidates. In the case of unstable gravitinos, the gravitino
constraint can be satisfied for values of the initial temperature well above
those required in the standard cosmology.Comment: Final versio
On exact solutions for quintessential (inflationary) cosmological models with exponential potentials
We first study dark energy models with a minimally-coupled scalar field and
exponential potentials, admitting exact solutions for the cosmological
equations: actually, it turns out that for this class of potentials the
Einstein field equations exhibit alternative Lagrangians, and are completely
integrable and separable (i.e. it is possible to integrate the system
analytically, at least by quadratures). We analyze such solutions, especially
discussing when they are compatible with a late time quintessential expansion
of the universe. As a further issue, we discuss how such quintessential scalar
fields can be connected to the inflationary phase, building up, for this class
of potentials, a quintessential inflationary scenario: actually, it turns out
that the transition from inflation toward late-time exponential quintessential
tail admits a kination period, which is an indispensable ingredient of this
kind of theoretical models. All such considerations have also been done by
including radiation into the model.Comment: Revtex4, 10 figure
Dark Energy from structure: a status report
The effective evolution of an inhomogeneous universe model in any theory of
gravitation may be described in terms of spatially averaged variables. In
Einstein's theory, restricting attention to scalar variables, this evolution
can be modeled by solutions of a set of Friedmann equations for an effective
volume scale factor, with matter and backreaction source terms. The latter can
be represented by an effective scalar field (`morphon field') modeling Dark
Energy.
The present work provides an overview over the Dark Energy debate in
connection with the impact of inhomogeneities, and formulates strategies for a
comprehensive quantitative evaluation of backreaction effects both in
theoretical and observational cosmology. We recall the basic steps of a
description of backreaction effects in relativistic cosmology that lead to
refurnishing the standard cosmological equations, but also lay down a number of
challenges and unresolved issues in connection with their observational
interpretation.
The present status of this subject is intermediate: we have a good
qualitative understanding of backreaction effects pointing to a global
instability of the standard model of cosmology; exact solutions and
perturbative results modeling this instability lie in the right sector to
explain Dark Energy from inhomogeneities. It is fair to say that, even if
backreaction effects turn out to be less important than anticipated by some
researchers, the concordance high-precision cosmology, the architecture of
current N-body simulations, as well as standard perturbative approaches may all
fall short in correctly describing the Late Universe.Comment: Invited Review for a special Gen. Rel. Grav. issue on Dark Energy, 59
pages, 2 figures; matches published versio
Exponential Potentials for Tracker Fields
We show that a general, exact cosmological solution, where dynamics of scalar
field is assigned by an exponential potential, fulfils all the issues of dark
energy approach, both from a theoretical point of view and in comparison with
available observational data. Moreover, tracking conditions are discussed, with
a new treatment of the well known condition . We prove that the
currently used expression for is wrong.Comment: 29 pages,12 figures; contact [email protected]; revised version, to
appear in Physical Review
Inverse Power Law Quintessence with Non-Tracking Initial Conditions
A common property of popular models of quintessence dark energy is the
convergence to a common solution from a large range of the initial conditions.
We re-examine the popular inverse power-law model of quintessence (where the
common solution is dubbed as the 'tracker') with particular attention to the
initial conditions for the field and their influence on the evolution. We find
that previously derived limits on the parameters of the potential in this model
are valid only in a range of initial conditions. A reasonably sharp boundary
lies where the initial energy density of the scalar field is equal to that of
the background radiation component. An initial quintessence energy density
above this equipartition value lead to a solution that will not have joined the
tracker solution by the present epoch. These non-tracker solutions possess the
property that their present equation of state is very compatible with the
observed bounds and independent of the exponent of the potential.Comment: RevTEX4, 9 figure
Measurement of the cosmic muon annual and diurnal flux variation with the COSINE-100 detector
We report measurements of annual and diurnal modulations of the cosmic-ray muon rate in the Yangyang underground laboratory (Y2L) using 952 days of COSINE-100 data acquired between September 2016 and July 2019. A correlation of the muon rate with the atmospheric temperature is observed and its amplitude on the muon rate is determined. The effective atmospheric temperature and muon rate variations are positively correlated with a measured effective temperature coefficient of αT = 0.80 ± 0.11. This result is consistent with a model of meson production in the atmosphere. We also searched for a diurnal modulation in the underground muon rate by comparing one-hour intervals. No significant diurnal modulation of the muon rate was observed