13 research outputs found

    Implications of Oxidative Stress in Glioblastoma Multiforme Following Treatment with Purine Derivatives.

    Get PDF
    Recently, small compound-based therapies have provided new insights into the treatment of glioblastoma multiforme (GBM) by inducing oxidative impairment. Kinetin riboside (KR) and newly designed derivatives (8-azaKR, 7-deazaKR) selectively affect the molecular pathways crucial for cell growth by interfering with the redox status of cancer cells. Thus, these compounds might serve as potential alternatives in the oxidative therapy of GBM. The increased basal levels of reactive oxygen species (ROS) in GBM support the survival of cancer cells and cause drug resistance. The simplest approach to induce cell death is to achieve the redox threshold and circumvent the antioxidant defense mechanisms. Consequently, cells become more sensitive to oxidative stress (OS) caused by exogenous agents. Here, we investigated the effect of KR and its derivatives on the redox status of T98G cells in 2D and 3D cell culture. The use of spheroids of T98G cells enabled the selection of one derivative-7-deazaKR-with comparable antitumor activity to KR. Both compounds induced ROS generation and genotoxic OS, resulting in lipid peroxidation and leading to apoptosis. Taken together, these results demonstrated that KR and 7-deazaKR modulate the cellular redox environment of T98G cells, and vulnerability of these cells is dependent on their antioxidant capacity

    Biodiversity of soil bacteria exposed to sub-lethal concentrations of phosphonium-based ionic liquids: Effects of toxicity and biodegradation

    Get PDF
    Little is known about the effect of ionic liquids (ILs) on the structure of soil microbial communities and resulting biodiversity. Therefore, we studied the influence of six trihexyl(tetradecyl)phosphonium ILs (with either bromide or various organic anions) at sublethal concentrations on the structure of microbial community present in an urban park soil in 100-day microcosm experiments. The biodiversity decreased in all samples (Shannon's index decreased from 1.75 down to 0.74 and OTU's number decreased from 1399 down to 965) with the largest decrease observed in the microcosms spiked with ILs where biodegradation extent was higher than 80%. (i.e. [P66614][Br] and [P66614][2,4,4]). Despite this general decrease in biodiversity, which can be explained by ecotoxic effect of the ILs, the microbial community in the microcosms was enriched with Gram-negative hydrocarbon-degrading genera e.g. Sphingomonas. It is hypothesized that, in addition to toxicity, the observed decrease in biodiversity and change in the microbial community structure may be explained by the primary biodegradation of the ILs or their metabolites by the mentioned genera, which outcompeted other microorganisms unable to degrade ILs or their metabolites. Thus, the introduction of phosphonium-based ILs into soils at sub-lethal concentrations may result not only in a decrease in biodiversity due to toxic effects, but also in enrichment with ILs-degrading bacteria

    Base-modified nucleosides: etheno derivatives

    Get PDF
    This review presents synthesis and chemistry of nucleoside analogs, possessing an additional fused, heterocyclic ring of the etheno type, such as 1,N6-ethenoadenosine, 1,N4-ethenocytidine, 1,N2-ethenoguanosine, and other related derivatives. Formation of ethenonucleosides, in the presence of α-halocarbonyl reagents and their mechanism, stability and degradation, reactions of substitution and transglycosylation, as well as their application in the nucleoside synthesis, have been described. Some of the discussed compounds may be applied as chemotherapeutic agents in antiviral and anticancer treatment, acting as pro-nucleosides of already known, biologically active nucleoside analogs.

    Searching for anti-glioma activity. Ribonucleoside analogues with modifications in nucleobase and sugar moieties

    No full text
    Several ribonucleoside analogues with modifications in the nucleobase and sugar moiety have been screened for anti-glioma activity in the T98G glioma cell line using cervical (HeLa) cell line as reference human malignant cells, and lung fibroblast (MCR-5) cell line as non-cancerous reference cells. Among the investigated compounds, ribonucleosides containing 6-chloropurine (3), 7-guanine (5) and a pyrrolopyrimidine (18) as nucleobases, show promising anti-glioma activity with good selectivity indices, and can be considered as lead structures for further anti-cancer studies

    Synthesis and Characterization of Low-Cost Cresol-Based Benzoxazine Resins as Potential Binders in Abrasive Composites

    No full text
    A series of cresol-based benzoxazines were synthesized for potential application as a polymer matrix in abrasive composites. The chemical structures of the obtained benzoxazine resins were investigated in detail using Fourier transform infrared spectroscopy (FTIR) and hydrogen-1 as well as carbon-13 nuclear magnetic resonance spectroscopy (1H NMR, 13C NMR) with an additional analysis using two-dimensional NMR techniques (2D NMR 1H-1H COSY, 1H-13C gHSQC and gHMBC). Structural analysis confirmed the presence of vibrations of -O-C-N- at ~950 cm−1 wavenumber, characteristic for an oxazine ring. The thermal properties of benzoxazine monomers were examined using differential scanning calorimetry (DSC) analysis. The polymerization enthalpy varied from 143.2 J/g to 287.8 J/g. Thermal stability of cresol-based benzoxazines was determined using thermogravimetry (TGA) analysis with additional analysis of the amount of volatile organic compounds (VOC) emitted from the synthesized benzoxazines during their crosslinking by static headspace coupled with gas chromatography technique (HS-GC). The amount of residual mass significantly differed between all synthesized polybenzoxazines in the range from 8.4% to 21.2%. The total VOC emission for benzoxazines decreased by 46–77% in reference to a conventional phenolic binder. The efficiency of abrasive composites with the benzoxazine matrix was evaluated based on abrasion tests. Performed analyses confirmed successful synthesis and proper chemical structure of cresol-based benzoxazines. All the experiments indicated that benzoxazines based on different cresol isomers significantly differ from each other. Good thermal performance and stability of the abrasive composites with the polybenzoxazine matrix and significantly lower VOC emission allow us to state that benzoxazines can be a promising and valuable alternative to the phenolics and a new path for the development of modern, eco-friendly abrasives
    corecore