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Abstract 38 
It is unknown whether diesel-degrading bacterial communities are structurally and functionally 39 
robust when exposed to different hydrocarbon types. Here, we exposed a diesel-degrading 40 
consortium to model either alkanes, cycloalkanes, or aromatic hydrocarbons as carbon sources to 41 
study its structural resistance. The structural resistance of the consortium was low, with changes in 42 
relative abundances of up to four orders of magnitude, depending on hydrocarbon type and bacterial 43 
taxon. The low resistance is explained by the presence of hydrocarbon-degrading specialists in the 44 
consortium and differences in the growth kinetics on individual hydrocarbons. However, despite 45 
this low resistance, the structural and functional resilience were high, as verified by re-exposing the 46 
hydrocarbon-perturbed consortium to diesel fuel. The high resilience is either due to the short 47 
exposure time, insufficient for permanent changes in consortium structure and function, or the 48 
ability of some consortium members to be maintained during exposure on degradation intermediates 49 
produced by other members. In summary, the consortium is expected to cope with short term 50 
exposures to narrow carbon feeds while maintaining its structural and functional integrity, which 51 
remains an advantage over biodegradation approaches using single species cultures. 52 
 53 
Keywords  54 
biodegradation, community dynamics, hydrocarbon, robustness, resilience 55 
 56 

1. Introduction 57 

 58 
Selection of microbial communities for bioaugmentation of soils contaminated with hydrocarbon 59 
mixtures, such as diesel fuel, must consider their ability to adapt to temporal changes in 60 
hydrocarbon composition over the course of biodegradation  [1, 2]. Similarly, if bioremediation 61 
relies on the activity of autochthonous microorganisms, temporal changes in the community 62 
structure and function can occur [3–5]. The ability of microbial communities to resist to such, 63 
potentially irreversible, changes is one of the factors determining the success of bioremediation [6]. 64 
This ability, often referred to as robustness, is usually characterized by investigating: (i) the ability 65 
of a community to resist a change in its structure after perturbation; and (ii) the potential for 66 
recovery of the community’s structure to its initial state after removal of the perturbation. These two 67 
indicators of structural robustness are referred to with the terms structural resistance and structural 68 
resilience, respectively [7, 8]. The structure of a community may also influence its functional 69 
resilience, understood as the ability of a community to maintain a particular activity despite 70 
perturbation [7, 9, 10]. 71 

Vila et al (2010) showed that successive biodegradation of particular hydrocarbon fractions 72 
in the marine environment is conducted by different, temporally dominant bacterial taxa [11]. Also 73 
Kostka et al. (2011) showed that Alcanivorax was the dominant taxon during linear and branched 74 
alkanes utilization in the early stages of crude oil biodegradation in marine environment, whereas 75 
Acinetobacter, Marinobacter and Pseudomonas, identified as both alkane and aromatics degraders, 76 
were the most abundant at the later stage of biodegradation [2]. Diesel-degrading consortia are 77 
similarly not thought to consists of generalist bacteria with ability for growth on all major 78 
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hydrocarbon types (that is, linear and branched alkanes, cycloalkanes and aromatic hydrocarbons) 79 
present in a petroleum diesel fuel [1]. It is expected that the structural resistance of diesel-degrading 80 
consortia is low. If a given hydrocarbon (e.g., the branched-chain alkane pristane) is utilized by one 81 
consortium member only, the change in structure of the consortium, when exposed to that 82 
hydrocarbon, will be governed by the initial fraction of cells belonging to that consortium member, 83 
the kinetics of growth of the degrading member on that hydrocarbon, and the exposure time to the 84 
hydrocarbon. On the other hand, if a hydrocarbon can be utilized by many members of the 85 
consortium, its change in structure will depend mainly on the differences in the kinetics of growth 86 
between consortium members on that hydrocarbon. Both exposure time and the kinetics of growth 87 
are expected to play a key role in determining the structural resilience: the ability of the perturbed 88 
community to recover its initial state.  89 

Resistance and resilience of microbial communities must be considered when constructing  90 
consortia for bioaugmentation of hydrocarbon mixtures [6]. Low resistance is undesirable if a 91 
consortium isolated on a specific hydrocarbon mixture, e.g. petroleum diesel fuel, is exposed to 92 
various hydrocarbons present in the diesel fuel over the course of biodegradation, unless the 93 
consortium is structurally and functionally resilient. Ideally, the consortium should be able to cope 94 
with narrow carbon feeds and adapt readily to varying composition of a hydrocarbon mixture over 95 
time. To date, there is limited knowledge on the structural resistance and resilience of diesel-96 
degrading bacterial consortia associated with exposure to different hydrocarbon types. 97 

In this paper, we use a diesel-degrading bacterial consortium to evaluate its: (i) structural 98 
resistance, measured as the degree of change in structure in terms of abundance of the dominant 99 
bacterial taxa when deprived of its typical energy source (i.e., petroleum diesel fuel) and perturbed 100 
to grow on individual model aliphatic, cycloaliphatic, or aromatic hydrocarbons; (ii) structural 101 
resilience, measured as the degree of recovery of the perturbed consortium to its initial state when 102 
re-exposed to diesel fuel after its perturbation; and (iii) functional resilience, measured as the ability 103 
of the previously perturbed and re-exposed consortium to mineralize the diesel fuel. The relative 104 
abundance of seven core taxa, used to describe the structure of the perturbed and recovered 105 
communities, was quantified using real-time PCR and the ddCt method for relative quantification 106 
[12]. In total, 6 aliphatic (n-dodecane, n-hexadecane, n-octadecane, n-docosane, 107 
heptamethylnonane, pristane), 5 cycloaliphatic (decalin, cycloheptane, ethylcyclohexane, 108 
butylcyclohexane, bicyclohexyl), and 8 aromatic (acenaphthene, ethylbenzene, 1,5-109 
dimethyltetraline, o-xylene, cyclohexylbenzene, naphthalene, 2-ethylnaphthalene, phenanthrene) 110 
hydrocarbons, which represent major hydrocarbon types present in petroleum diesel fuel, were 111 
employed. In addition, biodiesel (a mixture of fatty acid methyl esters) derived from rapeseed, was 112 
used. Thereby, we show how the overall low structural resistance depends on the type of 113 
hydrocarbon and bacterial taxon, and how the perturbed consortium recovers its initial state, 114 
presenting high structural and functional resilience. 115 
 116 

2. Materials and methods 117 

 118 
2.1. Bacterial consortium 119 
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The bacterial community employed in this study had been isolated from a soil contaminated with 120 
crude oil using selective enrichments with diesel fuel as source of carbon and energy [13]. The 121 
community contained bacteria of the following taxa: Achromobacter sp. (AchrP), Alcaligenes sp. 122 
(AlcP), Citrobacter sp. (CKK), Comamonadaceae (ComP), Sphingobacterium sp. (SphiP), 123 
Pseudomonas sp. (PseuP), and Variovorax sp. (VariP) [14]. The community has a degradation 124 
potential toward diesel and biodiesel fuels [13–16], and is able to mineralize all the individual 125 
hydrocarbons employed in this study [17]. 126 

The community was stored in 30% (v/v) glycerol stocks at -80°C. To prepare an inoculum, a 127 
stock suspension (1 mL) was transferred to a 300 mL Erlenmeyer flask containing 50 mL of mineral 128 
medium [13] and petroleum diesel fuel (0.5%, v/v), and was cultivated for 24 h at 25°C on an 129 
orbital shaker (120 rpm). Then, a 1 mL aliquot of the cell suspension was transferred to a new 130 
enrichment flask and the culture was grown for 3 days in the same conditions. This step was 131 
repeated three times and cells from the last enrichment were centrifuged at 10,000×g, washed twice 132 
with 40 mL of the mineral medium, re-suspended in the medium, and used as inoculum. This 133 
inoculum is further referred to as the initial community. 134 

 135 
2.2. Hydrocarbons 136 
To study the structural resistance of the community against carbon source changes, a total of 19 137 
individual hydrocarbons representing all major hydrocarbon types present in petroleum diesel fuel, 138 
were used (Table 1). Structural resistance was also assessed against 4 model hydrocarbon mixtures 139 
and against biodiesel derived from rapeseed (Table 1). The hydrocarbons were purchased from 140 
Sigma Aldrich. The biodiesel, produced according to DIN E 51606 [18] was purchased from a 141 
supplier in Germany, whereas petroleum diesel fuel, produced according to EN 590:2004 [19] was 142 
purchased from a petrol station (PKN Orlen, Poland). Prior to experiments, all the fuels had been 143 
sterilized by filtration (Millex, pore size of 0.2 μm, Millipore). 144 
 145 
2.3. Repeated exposure to hydrocarbons 146 
The experimental design is presented in Figure 1. The structural resistance of the community was 147 
evaluated by comparing the relative abundances of core taxa within the initial community (that is, 148 
the preculture grown on diesel fuel) with that of the communities perturbed by the growth on 149 
individual or mixtures of defined hydrocarbons (Table 1) as sources of carbon in repeated growth 150 
experiments. First, cells (1-mL cell suspension) were transferred from the inoculum culture to 500-151 
mL bottles containing 50 mL medium and hydrocarbon or hydrocarbon mixture (including diesel 152 
fuel as initial carbon source) at concentrations given in Table 1 and cultivated at 25°C at 120 rpm 153 
for 7 days. Then, aliquots were transferred to new set of bottles containing medium (the ratio of 154 
inoculum volume to total liquid volume was 1:50) and same hydrocarbons at their respective 155 
concentrations and cultivated in the same conditions for 7 days. This step was repeated 3 times, 156 
reaching 5 steps in total. 157 

The structural resilience of the community was evaluated by comparing the structure of the 158 
initial community with that of the communities first perturbed by growth on individual 159 
hydrocarbons or defined mixtures, as described above, and then returned to grow on complex 160 
petroleum diesel fuel as sole carbon source. Again, growth on diesel was repeated by 2 sequential 161 
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dilution passages (again, the ratio of inoculum volume to total liquid volume was 1:50), reaching 3 162 
steps in total. Aliquots from the last growth passage were sampled to determine community 163 
structure and are referred to as recovered communities.  164 

To assess the functional community resilience, we compared the initial and recovered 165 
communities with respect to the mineralization kinetics of petroleum diesel fuel in saturated sand 166 
microcosms. 167 
 168 
2.4. Structure of the community 169 
Real-time PCR and the ddCt method for relative quantification (12), employed earlier by Cyplik et 170 
al. (2011) [14], were used to quantify the relative abundance of the core taxa, from which we 171 
described the structure of the perturbed and recovered communities. In the ddCt methods, the 172 
relative abundance is expressed as relative quantity (RQ), where the amount of target rRNA genes 173 
for the seven bacterial taxa retrieved from the studied communities is normalized to the total 174 
number of bacterial rRNA in the respective community (Eq. 1). 175 
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 178 
where qT

t is the quantity of a taxon of interest (i.e., target in ddCt terms) in any perturbed or 179 
recovered community (i.e., sample) at time t equal to 5 and 8 weeks for the perturbed and recovered 180 
communities, respectively; qB

t is the quantity of total bacteria (i.e., reference) in the sample at time 181 
t; qT

0 is the quantity of the target in the initial community (i.e. calibrator) at time t equal to zero; qB
0 182 

is the quantity of the reference in the initial community at time t equal to zero. XN,q  and XN,cb are 183 
thus the normalized amount of the target taxon in the sample and the normalized amount of the 184 
target taxon in the initial community, respectively. In the ddCt method, the RQ is computed from 185 
the difference in threshold cycles for the target and the reference in a sample (∆CT,q) and the 186 
difference in threshold cycles for target and reference in a calibrator (∆CT,cb). The efficiency of the 187 
target (E) was assumed equal to 1 [12]. 188 

Biomass was collected by centrifugation of the liquid culture at 8228×g for 15 min. Total 189 
DNA was extracted and purified using Genomic Mini kit (A&A Biotechnology, Poland) following 190 
the manufacturer`s instruction with initial pretreatment with lysozyme (45 mg/mL), lysostaphin 191 
(200 U/mL) and mutanolysin (250 U/mL). The characteristics of primers and probe sets for the PCR 192 
can be found in Cyplik et al. (2011) [14]. 193 
 194 
2.5. Mineralization kinetics of diesel fuel in saturated sand microcosms 195 
Mineralization of diesel fuel was studied in saturated sand microcosms, as described in Lisiecki et 196 
al. (2014) [20]. Briefly, 50 g of dry sand was placed in a sealed 1-litre glass bottles. The 197 
microcosms were spiked with diesel fuel (16 g/kg dry sand) applied on the sand surface. Then, the 198 
microcosms were inoculated with the initial community, or with the recovered community (re-199 
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exposed to diesel fuel after exposure to hydrocarbons) by applying a dense cell suspension (1 mL; 200 
OD600nm 3±0.1) on the sand surface. Afterwards, 14 mL of mineral medium was added to obtain full 201 
saturation. Microcosms were maintained without disturbance at 20°C for 28 days. The 202 
mineralization was determined by measuring CO2 content in a base trap (10 mL of 0.75 M NaOH in 203 
a 20 mL vial) placed in microcosms. Titration of the diluted NaOH and Na2CO3 solution from the 204 
trap with 0.1 M HCl was done using an automatic titrator (Metrohm titroprocessor 686). Each 205 
experiment was carried out in triplicates. 206 
 207 

3. Results 208 
 209 
The response of the studied consortium to model hydrocarbons was hydrocarbon- and taxon-210 
specific (Fig 2, left panel). Both increases and decreases in relative taxon abundance, up to four 211 
orders of magnitude relative to the initial community, were observed.  212 

When exposed to n-alkanes, the largest changes in abundance were found for Citrobacter sp. 213 
(an increase of four orders of magnitude), and Achromobacter sp. (a decrease of three orders of 214 
magnitude) (Fig 2a). The response for other community members was somewhat smaller, within 215 
one order of magnitude. For branched-alkanes, the Alcaligenes sp., Achromobacter sp., Citrobacter 216 
sp., Comamonadaceae and Pseudomonas sp. taxa increased in relative abundance up to three orders 217 
of magnitude after exposure to heptamethylnonane and pristane (Fig 2a). On the other hand, 218 
Sphingobacterium sp. decreased in relative abundance after exposure to branched alkanes, 219 
especially pristane. No significant changes were observed for Variovorax sp. For cycloalkanes, an 220 
increase in abundance of up to two orders of magnitude (Achromobacter, Comamonadaceae and 221 
Variovorax sp.) was observed, while Citrobacter sp. and Sphingobacterium sp. did not significantly 222 
change in their abundance (Fig. 2b). For aromatic hydrocarbons, Alcaligenes sp., 223 
Comamonadaceae, Pseudomonas sp., Sphingobacterium sp. and Variovorax sp. were, in most 224 
cases, up to four orders of magnitude more abundant in comparison to their relative quantity in 225 
initial community, whereas the abundance of Achromobacter sp. and Citrobacter sp. decreased up 226 
to three orders of magnitude (Fig. 2c).  227 

Overall, these results suggest that the structural resistance of the consortium was low. 228 
However, when these hydrocarbon-perturbed cultures were re-exposed to diesel fuel, the relative 229 
abundance of the dominant taxa returned close to the values in the initial community (Fig. 2e-h). 230 
The RQ values (log10-transformed) ranged from -0.5 to 0.5. Further, in the 28-day mineralization 231 
kinetics test, all recovered communities showed similar kinetics of diesel mineralization (Fig. 2i-l). 232 
This suggests that the ability to degrade diesel fuel, did not change, and functional resilience was 233 
high. 234 
 235 

4. Discussion 236 

 237 
4.1. Explaining low structural resistance and high resilience 238 
Structural changes in the community are expected when deprived of its normal energy source, the 239 
diesel fuel, and forced to survive on a single hydrocarbon. Allison and Martiny (2008) already 240 
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showed that the composition of microbial communities is sensitive to changes in various carbon 241 
amendments, including petroleum [21]. Although biodegradation of individual hydrocarbons was 242 
not verified in the present study, the consortium did have a potential to mineralize all the studied 243 
hydrocarbons when supplied as a mixture [17], suggesting that each individual hydrocarbon was 244 
degraded by one or more community members also when supplied as sole source of carbon and 245 
energy. This is further confirmed by an increase in turbidity that was observed in the flasks due to 246 
cell growth.  247 

Hydrocarbon toxicity is not likely to have influenced the community structure as the 248 
consortium had been adapted to relatively high (>5 mg/L) concentration of diesel fuel [13], and 249 
individual hydrocarbons were applied at subinhibitory levels. Thus, an increase of RQ values of a 250 
taxon when exposed to a specific hydrocarbon can indicate that either: (i) the hydrocarbon was a 251 
primary carbon and energy source for that taxon, or (ii) the hydrocarbon was not a primary carbon 252 
and energy source for that taxon but the taxon benefited from its biodegradation by another 253 
community member(s). On the other hand, a decrease in relative abundance could indicate that 254 
either: (i) a taxon did not have the ability to grow on the hydrocarbon and did not benefit from its 255 
biodegradation by other member(s), or (ii) the taxon degraded the hydrocarbon but its specific 256 
growth rate was smaller compared to other members of the consortium.  257 

Allison and Martiny (2008) similarly showed that the composition of microbial communities 258 
does not recover for some time after disturbance [21]. Although we did not evaluate the functional 259 
resistance of the studied bacterial community during the study, a significant changes in 260 
mineralization of diesel fuel during stress (passages on single hydrocarbons) are expected to occur. 261 
The soil microbial community structure and functions can be both positively or negatively 262 
correlated depending on the used perturbation and measured function [22]. However, the 263 
mineralization of petroleum hydrocarbons (or hydrocarbon mixtures) seem to change with changing 264 
microbial community structure, since not all microorganisms present in the environmental 265 
communities can degrade all available carbon sources [1, 23]. Hamamura et al. (2013) already 266 
showed that mineralization of 14C-hexadecane was different among the same soil samples with 267 
diverse microbial community structures (induced by the contamination of soil with different 268 
hydrocarbon mixtures) [5]. In our study, despite the apparently low structural resistance, the 269 
structural and functional resilience were relatively high. This may suggest that either: (i) each 270 
identified consortium member was able to grow on each studied hydrocarbon, albeit at various 271 
rates; or (ii) not each consortium member was able to grow on each studied hydrocarbon, but the 272 
exposure time was short enough to avoid irreversible changes in community structure. The latter 273 
explanation is more likely as in diesel-degrading consortia, it is known that some bacteria degrade a 274 
wide variety of hydrocarbons (and are therefore generalists), while others are specialized to few 275 
compounds (and are therefore specialists) [1]. 276 
   277 
4.2. Hydrocarbon-degrading specialist and generalists in the consortium 278 
Specialists are likely found in taxa that displayed the highest difference in relative abundance 279 
between individual hydrocarbons, such as seen for some branched-chain alkane or aromatic 280 
hydrocarbon exposures. 281 
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Linear alkanes are generally easier to degrade as compared to the branched ones [24–27]. In 282 
our consortium, however, Sphingobacterium sp. was the only alkane-degrading taxon that had 283 
decreased RQ values when exposed to branched alkanes. By contrast, Achromobacter sp. increased 284 
in relative abundance when exposed to branched alkanes only (when exposed to n-alkanes a 285 
decrease in relative abundance was observed). Thus, Sphingobacterium sp. could be dominated by 286 
strains which have alkane oxidation mechanisms specific to n-alkanes, such as β-oxidation, whereas 287 
Achromobacter sp. could be dominated by bacteria which have alkane oxidation mechanisms 288 
specific to branched alkanes, such as ω-oxidation [28]. Another example of specialized alkane-289 
degraders could be strains within the Citrobacter sp. taxon, which increased significantly in relative 290 
abundance when exposed to n-alkanes or biodiesel, but less when exposed to branched alkanes and 291 
cycloalkanes, and decreased in relative abundance when exposed to all aromatic hydrocarbons. This 292 
is supported by the fact that Citrobacter sp. showed the highest increase in relative abundance 293 
among all taxa when exposed to biodiesel, which was expected as biodegradation of fatty acid 294 
methyl esters from biodiesel proceeds through the pathway known for n-alkanes (i.e. through fatty 295 
acid intermediates [26]). This is also in agreement with the ability of n-alkane degraders to grow on 296 
the n-alkane oxidation products [29]. 297 

 Metabolic pathways of cycloalkanes are less characterized than those for linear or branched 298 
alkanes [26, 30]. During oxidation of a cyclic alkanes dicarboxylic acids are usually formed, 299 
similarly to ω-oxidation of branched alkanes [28, 30]. This could explain why the species expected 300 
to be primary n-alkane degraders, such as Citrobacter sp. or Sphingobacterium sp. did not increase 301 
in abundance when exposed to cyclic alkanes. By contrast, based on RQ values Alcaligenes sp., 302 
Comamonadaceae are expected to be dominated by generalists with regard to their potential for 303 
degradation of alkanes, with both β-oxidation and ω-oxidation mechanisms co-occurring within 304 
these taxa [31].  305 

Apart from Achromobacter sp. and Citrobacter sp., all taxa increased in relative abundance 306 
when exposed to aromatic hydrocarbons. This is consistent with the ability of AlcP, ComP, PseuP 307 
SphiP and VariP to degrade various aromatic hydrocarbons [32–41]. Relatively large increases in 308 
abundance after exposure to aromatic hydrocarbons are associated with somewhat lower increase in 309 
abundance of the taxa when exposed to n-alkanes, indicating that aromatic hydrocarbons are the 310 
preferential carbon source within the studied community. However, bacteria belonging to 311 
Pseudomonas sp. and Alcaligenes sp. are known to degrade a wide variety of compounds, including 312 
alkanes (e.g. dodecade, pristine) [37, 42, 43], cycloalkanes (e.g. cyclohexane, decaline) [37, 44, 45] 313 
and aromatic hydrocarbons (e.g. benzene, phenanthrene) [35, 36, 37, 39, 40] and are thus expected 314 
to be hydrocarbon-degrading generalists. 315 
 316 

5. Conclusions 317 
 318 
We showed that a diesel-degrading bacterial consortium was structurally and functionally robust 319 
when employed for biodegradation of various hydrocarbons. The robustness of the microbial 320 
community was evaluated by investigating the structural and functional resilience and resistance. 321 
Despite low structural resistance, which was explained by the presence of hydrocarbon-degrading 322 
specialists in the consortium and differences in the kinetics of growth, the structural and functional 323 
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resilience were high. The robustness of the diesel-degrading consortium is an advantage when 324 
employed for biodegradation (e.g. bioaugmentation) of environments which may have varying 325 
hydrocarbon composition over time. Such a consortium is expected to be able to cope with narrow 326 
carbon feeds yet maintaining structural and functional integrity, which is advantageous over 327 
biodegradation carried out by single species. 328 

Our findings raise several additional questions. First, it is unknown whether the results are 329 
applicable to other hydrocarbon-degrading consortia isolated on complex hydrocarbon mixtures. 330 
Second, it is unknown whether the structural and functional robustness is a property of consortia 331 
isolated from contaminated environments, or whether such a (robust) consortium can be constructed 332 
from single species of known ability to degrade specific hydrocarbons. Third, the applicability of 333 
these results to field conditions needs to be examined as mass transfer limitations of carbon sources 334 
and availability of nutrients may play a large role in shaping community structure. Finally, it is 335 
unknown whether the consortium maintains its structural and functional integrity if longer exposure 336 
times are used. Biodegradation time scales in soils or aquifers are longer than a few weeks, in which 337 
case structural robustness and functional performance might be challenged. 338 
 339 
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Figure captions 509 
 510 
Fig. 1. Experimental design for evaluating structural resistance and resilience and functional 511 
resilience of a diesel-degrading bacterial consortium. 512 
 513 
Fig 2. Relative quantity (RQ) values (in log10 scale) of hydrocarbon-perturbed cultures of the 514 
diesel-degrading bacterial consortium (a-d); of the hydrocarbon-perturbed cultures re-exposed to 515 
diesel fuel (e-h), and diesel fuel mineralization kinetics with respect to recovered communities and 516 
initial community (i-l). Error bars represent standard errors of the mean.517 
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	1. Introduction
	Vila et al (2010) showed that successive biodegradation of particular hydrocarbon fractions in the marine environment is conducted by different, temporally dominant bacterial taxa [11]. Also Kostka et al. (2011) showed that Alcanivorax was the dominan...
	Resistance and resilience of microbial communities must be considered when constructing  consortia for bioaugmentation of hydrocarbon mixtures [6]. Low resistance is undesirable if a consortium isolated on a specific hydrocarbon mixture, e.g. petroleu...
	2. Materials and methods
	2.1. Bacterial consortium
	The bacterial community employed in this study had been isolated from a soil contaminated with crude oil using selective enrichments with diesel fuel as source of carbon and energy [13]. The community contained bacteria of the following taxa: Achromob...
	The community was stored in 30% (v/v) glycerol stocks at -80 C. To prepare an inoculum, a stock suspension (1 mL) was transferred to a 300 mL Erlenmeyer flask containing 50 mL of mineral medium [13] and petroleum diesel fuel (0.5%, v/v), and was culti...
	2.2. Hydrocarbons
	To study the structural resistance of the community against carbon source changes, a total of 19 individual hydrocarbons representing all major hydrocarbon types present in petroleum diesel fuel, were used (Table 1). Structural resistance was also ass...
	2.3. Repeated exposure to hydrocarbons
	The experimental design is presented in Figure 1. The structural resistance of the community was evaluated by comparing the relative abundances of core taxa within the initial community (that is, the preculture grown on diesel fuel) with that of the c...
	The structural resilience of the community was evaluated by comparing the structure of the initial community with that of the communities first perturbed by growth on individual hydrocarbons or defined mixtures, as described above, and then returned t...
	To assess the functional community resilience, we compared the initial and recovered communities with respect to the mineralization kinetics of petroleum diesel fuel in saturated sand microcosms.
	2.4. Structure of the community
	Real-time PCR and the ddCt method for relative quantification (12), employed earlier by Cyplik et al. (2011) [14], were used to quantify the relative abundance of the core taxa, from which we described the structure of the perturbed and recovered comm...
	Eq. 1.
	where qPTPRtR is the quantity of a taxon of interest (i.e., target in ddCt terms) in any perturbed or recovered community (i.e., sample) at time t equal to 5 and 8 weeks for the perturbed and recovered communities, respectively; qPBPRtR is the quantit...
	Biomass was collected by centrifugation of the liquid culture at 8228×g for 15 min. Total DNA was extracted and purified using Genomic Mini kit (A&A Biotechnology, Poland) following the manufacturer`s instruction with initial pretreatment with lysozym...
	2.5. Mineralization kinetics of diesel fuel in saturated sand microcosms
	Mineralization of diesel fuel was studied in saturated sand microcosms, as described in Lisiecki et al. (2014) [20]. Briefly, 50 g of dry sand was placed in a sealed 1-litre glass bottles. The microcosms were spiked with diesel fuel (16 g/kg dry sand)...
	3. Results
	The response of the studied consortium to model hydrocarbons was hydrocarbon- and taxon-specific (Fig 2, left panel). Both increases and decreases in relative taxon abundance, up to four orders of magnitude relative to the initial community, were obse...
	When exposed to n-alkanes, the largest changes in abundance were found for Citrobacter sp. (an increase of four orders of magnitude), and Achromobacter sp. (a decrease of three orders of magnitude) (Fig 2a). The response for other community members wa...
	Overall, these results suggest that the structural resistance of the consortium was low. However, when these hydrocarbon-perturbed cultures were re-exposed to diesel fuel, the relative abundance of the dominant taxa returned close to the values in the...
	4. Discussion
	4.1. Explaining low structural resistance and high resilience
	Structural changes in the community are expected when deprived of its normal energy source, the diesel fuel, and forced to survive on a single hydrocarbon. Allison and Martiny (2008) already showed that the composition of microbial communities is sens...
	Hydrocarbon toxicity is not likely to have influenced the community structure as the consortium had been adapted to relatively high (>5 mg/L) concentration of diesel fuel [13], and individual hydrocarbons were applied at subinhibitory levels. Thus, an...
	Allison and Martiny (2008) similarly showed that the composition of microbial communities does not recover for some time after disturbance [21]. Although we did not evaluate the functional resistance of the studied bacterial community during the study...
	4.2. Hydrocarbon-degrading specialist and generalists in the consortium
	Specialists are likely found in taxa that displayed the highest difference in relative abundance between individual hydrocarbons, such as seen for some branched-chain alkane or aromatic hydrocarbon exposures.
	Linear alkanes are generally easier to degrade as compared to the branched ones [24–27]. In our consortium, however, Sphingobacterium sp. was the only alkane-degrading taxon that had decreased RQ values when exposed to branched alkanes. By contrast, A...
	Metabolic pathways of cycloalkanes are less characterized than those for linear or branched alkanes [26, 30]. During oxidation of a cyclic alkanes dicarboxylic acids are usually formed, similarly to ω-oxidation of branched alkanes [28, 30]. This coul...
	Apart from Achromobacter sp. and Citrobacter sp., all taxa increased in relative abundance when exposed to aromatic hydrocarbons. This is consistent with the ability of AlcP, ComP, PseuP SphiP and VariP to degrade various aromatic hydrocarbons [32–41]...
	5. Conclusions
	We showed that a diesel-degrading bacterial consortium was structurally and functionally robust when employed for biodegradation of various hydrocarbons. The robustness of the microbial community was evaluated by investigating the structural and funct...
	Our findings raise several additional questions. First, it is unknown whether the results are applicable to other hydrocarbon-degrading consortia isolated on complex hydrocarbon mixtures. Second, it is unknown whether the structural and functional rob...
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