72 research outputs found

    The prompt energy release of gamma-ray bursts using a cosmological k-correction

    Full text link
    The fluences of gamma-ray bursts (GRBs) are measured with a variety of instruments in different detector energy ranges. A detailed comparison of the implied energy releases of the GRB sample requires, then, an accurate accounting of this diversity in fluence measurements which properly corrects for the redshifting of GRB spectra. Here, we develop a methodology to ``k-correct'' the implied prompt energy release of a GRB to a fixed co-moving bandpass. This allows us to homogenize the prompt energy release of 17 cosmological GRBs (using published redshifts, fluences, and spectra) to two common co-moving bandpasses: 20-2000 keV and 0.1 keV-10 MeV (``bolometric''). While the overall distribution of GRB energy releases does not change significantly by using a k-correction, we show that uncorrected energy estimates systematically undercounts the bolometric energy by ~5% to 600%, depending on the particular GRB. We find that the median bolometric isotropic-equivalent prompt energy release is 2.2 x 10^{53} erg with an r.m.s. scatter of 0.80 dex. The typical estimated uncertainty on a given k-corrected energy measurement is ~20%.Comment: Accepted to the Astronomical Journal. 21 pages (LaTeX) and 4 figure

    Do OB Runaway Stars Have Pulsar Companions?

    Full text link
    We have conducted a VLA search for radio pulsars at the positions of 44 nearby OB runaway stars. The observations involved both searching images for point sources of continuum emission and a time series analysis. Our mean flux sensitivity to pulsars slower than 50 ms was 0.2 mJy. No new pulsars were found in the survey. The size of the survey, combined with the high sensitivity of the observations, sets a significant constraint on the probability, fpf_p, of a runaway OB star having an observable pulsar companion. We find fp≤6.5f_p \le 6.5\% with 95\% confidence, if the general pulsar luminosity function is applicable to OB star pulsar companions. If a pulsar beaming fraction of \onethird\ is assumed, then we estimate that fewer than 20\% of runaway OB stars have neutron star companions, unless pulsed radio emission is frequently obscured by the OB stellar wind. Our result is consistent with the dynamical (or cluster) ejection model for the formation of OB runaways. The supernova ejection model is not ruled out, but is constrained by these observations to allow only a small binary survival fraction, which may be accommodated if neutron stars acquire significant natal kicks. According to Leonard, Hills and Dewey (1994), a 20\% survival fraction corresponds to a 3-d kick velocity of 420 km s−1^{-1}. This value is in close agreement with recent revisions of the pulsar velocity distribution.Comment: Submitted to the Astronomical Journal. 16 pages. Latex uses aaspp4.sty. 3 postscript figures. Address correspondence to Colin Philp ([email protected]). Revision was to replace .ps file with latex fil

    Interstellar Scattering Towards the Galactic Center as Probed by OH/IR Stars

    Get PDF
    Angular broadening measurements are reported of 20 OH/IR stars near the galactic center. This class of sources is known to have bright, intrinsically compact (less than or equal to 20 mas) maser components within their circumstellar shells. VLBA antennas and the VLA were used to perform a MKII spectral line VLBI experiment. The rapid drop in correlated flux with increasing baseline, especially for sources closest to the galactic center, is attributed to interstellar scattering. Angular diameters were measured for 13 of our sources. Lower limits were obtained for the remaining seven. With the data, together with additional data taken from the literature, the distribution was determined of interstellar scattering toward the galactic center. A region was found of pronounced scattering nearly centered on SgrA*. Two interpretations are considered for the enhanced scattering. One hypothesis is that the scattering is due to a clump of enhanced turbulence, such as those that lie along lines of sight to other known objects, that has no physical relationship to the galactic center. The other model considers the location of the enhanced scattering to arise in the galactic center itself. The physical implications of the models yield information on the nature of interstellar scattering

    OH(1720 MHz) Masers As Signposts of Molecular Shocks

    Get PDF
    We present observations of molecular gas made with the 15-m James Clark Maxwell Telescope toward the sites of OH(1720 MHz) masers in three supernova remnants: W28, W44 and 3C391. Maps made in the 12CO J=3-2 line reveal that the OH masers are preferentially located along the edges of thin filaments or clumps of molecular gas. There is a strong correlation between the morphology of the molecular gas and the relativistic gas traced by synchrotron emission at centimeter wavelengths. Broad CO line widths (dV=30-50 km/s) are seen along these gaseous ridges, while narrow lines are seen off the ridges. The ratio of H2CO line strengths is used to determine temperatures in the broad-line gas of 80 K, and the 13CO J=3-2 column density suggests densities of 10^4-10^5 cm{-3}. These observations support the hypothesis that the OH(1720 MHz) masers originate in post-shock gas, heated by the passage of a supernova remnant shock through dense molecular gas. From the observational constraints on the density, velocity and magnetic field we examine the physical properties of the shock and discuss the shock-production of OH. These OH(1720 MHz) masers are useful ``signposts'', which point to the most promising locations to study supernova remnant/molecular cloud interactions.Comment: ApJ (in press

    Millimeter Observations of GRB 030329: Continued Evidence for a Two-Component Jet

    Get PDF
    We present the results of a dedicated campaign on the afterglow of GRB 030329 with the millimeter interferometers of the Owens Valley Radio Observatory (OVRO), the Berkeley-Illinois-Maryland Association (BIMA), and with the MAMBO-2 bolometer array on the IRAM 30-m telescope. These observations allow us to trace the full evolution of the afterglow of GRB 030329 at frequencies of 100 GHz and 250 GHz for the first time. The millimeter light curves exhibit two main features: a bright, constant flux density portion and a steep power-law decline. The absence of bright, short-lived millimeter emission is used to show that the GRB central engine was not actively injecting energy well after the burst. The millimeter data support a model, advocated by Berger et al., of a two-component jet-like outflow in which a narrow angle jet is responsible for the high energy emission and early optical afterglow, and a wide-angle jet carrying most of the energy is powering the radio and late optical afterglow emissionComment: Accepted to ApJ

    Multiwaveband analysis of brightest GRB070125

    Get PDF
    We present a comprehensive multiwavelength analysis of the bright, long duration gamma-ray burst GRB 070125, comprised of observations in gamma-ray, X-ray, optical, millimeter and centimeter wavebands. Radio light curves show rapid flux variations, which are interpreted as due to interstellar scintillation, and are used to derive an upper limit of 2.4×10^17 cm on the radius of the fireball. Radio light curves and spectra suggest that the afterglow shock wave is moving in a dense medium. Our broadband modeling favors a constant density profile for the circumburst medium over a wind-like profile (R^−2). GRB 070125 is a burst with high radiative efficiency (>60%)
    • …
    corecore