2 research outputs found

    Distinct Associations of BMI and Fatty Acids With DNA Methylation in Fasting and Postprandial States in Men

    Get PDF
    We have previously shown that blood global DNA methylation (DNAm) differs between postprandial state (PS) and fasting state (FS) and is associated with BMI and polyunsaturated fatty acid (PUFA) (negatively and positively, respectively) in 12 metabolically healthy adult Mexican men (AMM cohort) equally distributed among conventional BMI classes. Here, we detailed those associations at CpG dinucleotide level by exploiting the Infinium methylation EPIC array (Illumina). We sought differentially methylated CpG (dmCpG) that were (1) associated with BMI (BMI-dmCpG) and/or fatty acids (FA) (FA-dmCpG) in FS or PS and (2) different across FS and PS within a BMI class. BMI-dmCpG and FA-dmCpG were more numerous in FS compared to PS and largely prandial state-specific. For saturated and monounsaturated FA, dmCpG overlap was higher across than within the respective saturation group. Several BMI- and FA-dmCpG mapped to genes involved in metabolic disease and in some cases matched published experimental data sets. Notably, SETDB1 and MTHFS promoter dmCpG could explain the previously observed associations between global DNAm, PUFA content, and BMI in FS. Surprisingly, overlap between BMI-dmCpG and FA-dmCpG was limited and the respective dmCpG were differentially distributed across functional genomic elements. BMI-dmCpG showed the highest overlap with dmCpG of the saturated FA palmitate, monounsaturated C20:1 and PUFA C20:2. Of these, selected promoter BMI-dmCpG showed opposite associations with palmitate compared to C20:1 and C20:2. As for the comparison between FS and PS within BMI classes, dmCpG were strikingly more abundant and variably methylated in overweight relative to normoweight or obese subjects (∼70-139-fold, respectively). Overweight-associated dmCpG-hosting genes were significantly enriched in targets for E47, SREBP1, and RREB1 transcription factors, which are known players in obesity and lipid homeostasis, but none overlapped with BMI-dmCpG. We show for the first time that the association of BMI and FA with methylation of disease-related genes is distinct in FS and PS and that limited overlap exists between BMI- and FA-dmCpG within and across prandial states. Our study also identifies a transcriptional regulation circuitry in overweight that might contribute to adaptation to that condition or to transition to obesity. Further work is necessary to define the pathophysiological implications of these findings

    Epigenetic marks associated with gestational diabetes mellitus across two time points during pregnancy

    No full text
    Abstract An adverse intrauterine or periconceptional environment, such as hyperglycemia during pregnancy, can affect the DNA methylation pattern both in mothers and their offspring. In this study, we explored the epigenetic profile in maternal peripheral blood samples through pregnancy to find potential epigenetic biomarkers for gestational diabetes mellitus (GDM), as well as candidate genes involved in GDM development. We performed an epigenome-wide association study in maternal peripheral blood samples in 32 pregnant women (16 with GDM and 16 non-GDM) at pregnancy week 24–28 and 36–38. Biochemical, anthropometric, and obstetrical variables were collected from all the participants. The main results were validated in an independent cohort with different ethnic origin (European = 307; South Asians = 165). Two hundred and seventy-two CpGs sites remained significantly different between GDM and non-GDM pregnant women across two time points during pregnancy. The significant CpG sites were related to pathways associated with type I diabetes mellitus, insulin resistance and secretion. Cg01459453 (SELP gene) was the most differentiated in the GDM group versus non-GDM (73.6 vs. 60.9, p = 1.06E−11; FDR = 7.87E−06). Three CpG sites (cg01459453, cg15329406, and cg04095097) were able to discriminate between GDM cases and controls (AUC = 1; p = 1.26E−09). Three differentially methylated positions (DMPs) were replicated in an independent cohort. To conclude, epigenetic marks during pregnancy differed between GDM cases and controls suggesting a role for these genes in GDM development. Three CpGs were able to discriminate GDM and non-GDM groups with high specificity and sensitivity, which may be biomarker candidates for diagnosis or prediction of GDM
    corecore