14 research outputs found

    Genome-wide association analysis and accuracy of genome-enabled breeding value predictions for resistance to infectious hematopoietic necrosis virus in a commercial rainbow trout breeding population

    Get PDF
    International audienceAbstractBackgroundInfectious hematopoietic necrosis (IHN) is a disease of salmonid fish that is caused by the IHN virus (IHNV). Under intensive aquaculture conditions, IHNV can cause significant mortality and economic losses. Currently, there is no proven and cost-effective method for IHNV control. Clear Springs Foods, Inc. has been applying selective breeding to improve genetic resistance to IHNV in their rainbow trout breeding program. The goals of this study were to elucidate the genetic architecture of IHNV resistance in this commercial population by performing genome-wide association studies (GWAS) with multiple regression single-step methods and to assess if genomic selection can improve the accuracy of genetic merit predictions over conventional pedigree-based best linear unbiased prediction (PBLUP) using cross-validation analysis.ResultsTen moderate-effect quantitative trait loci (QTL) associated with resistance to IHNV that jointly explained up to 42% of the additive genetic variance were detected in our GWAS. Only three of the 10 QTL were detected by both single-step Bayesian multiple regression (ssBMR) and weighted single-step GBLUP (wssGBLUP) methods. The accuracy of breeding value predictions with wssGBLUP (0.33–0.39) was substantially better than with PBLUP (0.13–0.24).ConclusionsOur comprehensive genome-wide scan for QTL revealed that genetic resistance to IHNV is controlled by the oligogenic inheritance of up to 10 moderate-effect QTL and many small-effect loci in this commercial rainbow trout breeding population. Taken together, our results suggest that whole genome-enabled selection models will be more effective than the conventional pedigree-based method for breeding value estimation or the marker-assisted selection approach for improving the genetic resistance of rainbow trout to IHNV in this population

    Incorporation of causative quantitative trait nucleotides in single-step GBLUP

    No full text
    Much effort is put into identifying causative quantitative trait nucleotides (QTN) in animal breeding, empowered by the availability of dense single nucleotide polymorphism (SNP) information. Genomic selection using traditional SNP information is easily implemented for any number of genotyped individuals using single-step genomic best linear unbiased predictor (ssGBLUP) with the algorithm for proven and young (APY). Our aim was to investigate whether ssGBLUP is useful for genomic prediction when some or all QTN are known. Simulations included 180,000 animals across 11 generations. Phenotypes were available for all animals in generations 6 to 10. Genotypes for 60,000 SNPs across 10 chromosomes were available for 29,000 individuals. The genetic variance was fully accounted for by 100 or 1000 biallelic QTN. Raw genomic relationship matrices (GRM) were computed from (a) unweighted SNPs, (b) unweighted SNPs and causative QTN, (c) SNPs and causative QTN weighted with results obtained with genome-wide association studies, (d) unweighted SNPs and causative QTN with simulated weights, (e) only unweighted causative QTN, (f-h) as in (b-d) but using only the top 10% causative QTN, and (i) using only causative QTN with simulated weight. Predictions were computed by pedigree-based BLUP (PBLUP) and ssGBLUP. Raw GRM were blended with 1 or 5% of the numerator relationship matrix, or 1% of the identity matrix. Inverses of GRM were obtained directly or with APY. Accuracy of breeding values for 5000 genotyped animals in the last generation with PBLUP was 0.32, and for ssGBLUP it increased to 0.49 with an unweighted GRM, 0.53 after adding unweighted QTN, 0.63 when QTN weights were estimated, and 0.89 when QTN weights were based on true effects known from the simulation. When the GRM was constructed from causative QTN only, accuracy was 0.95 and 0.99 with blending at 5 and 1%, respectively. Accuracies simulating 1000 QTN were generally lower, with a similar trend. Accuracies using the APY inverse were equal or higher than those with a regular inverse. Single-step GBLUP can account for causative QTN via a weighted GRM. Accuracy gains are maximum when variances of causative QTN are known and blending is at 1%

    Genomic selection models double the accuracy of predicted breeding values for bacterial cold water disease resistance compared to a traditional pedigree-based model in rainbow trout aquaculture

    No full text
    International audienceAbstractBackgroundPreviously, we have shown that bacterial cold water disease (BCWD) resistance in rainbow trout can be improved using traditional family-based selection, but progress has been limited to exploiting only between-family genetic variation. Genomic selection (GS) is a new alternative that enables exploitation of within-family genetic variation.MethodsWe compared three GS models [single-step genomic best linear unbiased prediction (ssGBLUP), weighted ssGBLUP (wssGBLUP), and BayesB] to predict genomic-enabled breeding values (GEBV) for BCWD resistance in a commercial rainbow trout population, and compared the accuracy of GEBV to traditional estimates of breeding values (EBV) from a pedigree-based BLUP (P-BLUP) model. We also assessed the impact of sampling design on the accuracy of GEBV predictions. For these comparisons, we used BCWD survival phenotypes recorded on 7893 fish from 102 families, of which 1473 fish from 50 families had genotypes [57 K single nucleotide polymorphism (SNP) array]. Naïve siblings of the training fish (n = 930 testing fish) were genotyped to predict their GEBV and mated to produce 138 progeny testing families. In the following generation, 9968 progeny were phenotyped to empirically assess the accuracy of GEBV predictions made on their non-phenotyped parents.ResultsThe accuracy of GEBV from all tested GS models were substantially higher than the P-BLUP model EBV. The highest increase in accuracy relative to the P-BLUP model was achieved with BayesB (97.2 to 108.8%), followed by wssGBLUP at iteration 2 (94.4 to 97.1%) and 3 (88.9 to 91.2%) and ssGBLUP (83.3 to 85.3%). Reducing the training sample size to n = ~1000 had no negative impact on the accuracy (0.67 to 0.72), but with n = ~500 the accuracy dropped to 0.53 to 0.61 if the training and testing fish were full-sibs, and even substantially lower, to 0.22 to 0.25, when they were not full-sibs.ConclusionsUsing progeny performance data, we showed that the accuracy of genomic predictions is substantially higher than estimates obtained from the traditional pedigree-based BLUP model for BCWD resistance. Overall, we found that using a much smaller training sample size compared to similar studies in livestock, GS can substantially improve the selection accuracy and genetic gains for this trait in a commercial rainbow trout breeding population

    Effect of Thermal Stress on Thermoregulation, Hematological and Hormonal Characteristics of Caracu Beef Cattle

    No full text
    This study evaluated the influence of environmental temperature on thermoregulation, hormonal, and hematological characteristics in Caracu cattle. Blood samples, hair length, coat and muzzle colors, rectal (RT), and surface temperatures were collected from 48 males and 43 females before (morning) and after sun exposure for eight hours (afternoon). Infrared thermography (IRT) was used to identify superficial temperature that exhibits a high correlation with RT. Hematological parameters, hormone concentrations, RT, and the superficial temperature obtained by IRT that exhibited the highest correlation with RT were evaluated by variance analysis. Regarding IRT, the lower left side of the body (LS) showed the highest correlation with the RT. Interaction between period and sex was observed for LS, cortisol, and eosinophils. Cortisone, progesterone, and RT were influenced by period and sex. Neutrophils and segmented neutrophils were influenced by the period, which showed the highest concentrations after sun exposure. Platelets, leukocytes, lymphocytes, and monocytes were influenced by sex. Heat stress changes several physiological characteristics where males and females exhibited differences in their responses to heat stress. Furthermore, most characteristics evaluated remained within the regular values observed for taurine Creole breeds, showing that Caracu is adapted to tropical climates

    Effects of Feeding and Drinking Behavior on Performance and Carcass Traits in Beef Cattle

    No full text
    Feed and water efficiency are important traits to improve beef cattle production’s economic and environmental sustainability. This study evaluated residual feed intake (RFI) and residual water intake (RWI) and their relationship with performance, ingestive behavior, and carcass traits in Caracu beef cattle. The data were analyzed using a generalized linear model with least squares means. The ingestive behavior, performance, and carcass traits were influenced by sex (p 0.75), rib eye area, and rump fat thickness than females, besides spending more time drinking and eating. Low RFI animals exhibited higher DMI than high RFI animals. Low RWI animals ingested 3.89 L/d of water further than high RWI animals. The interaction between sex and RWI influenced the DMI, BW0.75, and backfat thickness. The ingestive behavior of low and high RFI animals was similar, although high RWI animals visited a smaller number of drinkers than low RWI animals. Water intake positively affects productive efficiency, and the combined use of RWI and RFI may help improve the selection of more efficient animals contributing to reducing the costs of beef cattle production and improving environmental sustainability
    corecore