489 research outputs found

    Characterizing anomalous diffusion in crowded polymer solutions and gels over five decades in time with variable-lengthscale fluorescence correlation spectroscopy

    Get PDF
    The diffusion of macromolecules in cells and in complex fluids is often found to deviate from simple Fickian diffusion. One explanation offered for this behavior is that molecular crowding renders diffusion anomalous, where the mean-squared displacement of the particles scales as ⟹r2⟩∝tα\langle r^2 \rangle \propto t^{\alpha} with α<1\alpha < 1. Unfortunately, methods such as fluorescence correlation spectroscopy (FCS) or fluorescence recovery after photobleaching (FRAP) probe diffusion only over a narrow range of lengthscales and cannot directly test the dependence of the mean-squared displacement (MSD) on time. Here we show that variable-lengthscale FCS (VLS-FCS), where the volume of observation is varied over several orders of magnitude, combined with a numerical inversion procedure of the correlation data, allows retrieving the MSD for up to five decades in time, bridging the gap between diffusion experiments performed at different lengthscales. In addition, we show that VLS-FCS provides a way to assess whether the propagator associated with the diffusion is Gaussian or non-Gaussian. We used VLS-FCS to investigate two systems where anomalous diffusion had been previously reported. In the case of dense cross-linked agarose gels, the measured MSD confirmed that the diffusion of small beads was anomalous at short lengthscales, with a cross-over to simple diffusion around ≈1 Ό\approx 1~\mum, consistent with a caged diffusion process. On the other hand, for solutions crowded with marginally entangled dextran molecules, we uncovered an apparent discrepancy between the MSD, found to be linear, and the propagators at short lengthscales, found to be non-Gaussian. These contradicting features call to mind the "anomalous, yet Brownian" diffusion observed in several biological systems, and the recently proposed "diffusing diffusivity" model

    Suppression of spin-pumping by a MgO tunnel-barrier

    Full text link
    Spin-pumping generates pure spin currents in normal metals at the ferromagnet (F)/normal metal (N) interface. The efficiency of spin-pumping is given by the spin mixing conductance, which depends on N and the F/N interface. We directly study the spin-pumping through an MgO tunnel-barrier using the inverse spin Hall effect, which couples spin and charge currents and provides a direct electrical detection of spin currents in the normal metal. We find that spin-pumping is suppressed by the tunnel-barrier, which is contrary to recent studies that suggest that the spin mixing conductance can be enhanced by a tunnel-barrier inserted at the interface

    Efficacy of cyclosporin A in psoriasis: a summary of the United States’ experience

    Full text link
    Since its discovery in 1972, cyclosporin A (CyA) has been widely used in the experimental treatment of multiple inflammatory diseases considered to be of immune-mediated aetiology. In dermatology, oral CyA is most effective in the treatment of psoriasis and has been used successfully for plaque-type, pustular and erythrodermic forms of the disease. While dosages ranging from 1 to 14 mg/kg/day have been used, a starting dose of 4 mg/kg/day gives a rapid response with few side-effects. Nephrotoxicity remains the greatest concern in long-term use of the drug. Although intralesional CyA has proven effective in psoriasis, topical preparations have not. It is hoped that future research will provide effective topical formulations of CyA which are efficacious without the risks inherent in systemic administration.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72330/1/j.1365-2133.1990.tb02878.x.pd

    Detection and quantification of inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers

    Full text link
    Spin pumping is a mechanism that generates spin currents from ferromagnetic resonance (FMR) over macroscopic interfacial areas, thereby enabling sensitive detection of the inverse spin Hall effect that transforms spin into charge currents in non-magnetic conductors. Here we study the spin-pumping-induced voltages due to the inverse spin Hall effect in permalloy/normal metal bilayers integrated into coplanar waveguides for different normal metals and as a function of angle of the applied magnetic field direction, as well as microwave frequency and power. We find good agreement between experimental data and a theoretical model that includes contributions from anisotropic magnetoresistance (AMR) and inverse spin Hall effect (ISHE). The analysis provides consistent results over a wide range of experimental conditions as long as the precise magnetization trajectory is taken into account. The spin Hall angles for Pt, Pd, Au and Mo were determined with high precision to be 0.013±0.0020.013\pm0.002, 0.0064±0.0010.0064\pm0.001, 0.0035±0.00030.0035\pm0.0003 and −0.0005±0.0001-0.0005\pm0.0001, respectively.Comment: 11 page

    Magnetic Vortex Resonance in Patterned Ferromagnetic Dots

    Full text link
    We report a high-resolution experimental detection of the resonant behavior of magnetic vortices confined in small disk-shaped ferromagnetic dots. The samples are magnetically soft Fe-Ni disks of diameter 1.1 and 2.2 um, and thickness 20 and 40 nm patterned via electron beam lithography onto microwave co-planar waveguides. The vortex excitation spectra were probed by a vector network analyzer operating in reflection mode, which records the derivative of the real and the imaginary impedance as a function of frequency. The spectra show well-defined resonance peaks in magnetic fields smaller than the characteristic vortex annihilation field. Resonances at 162 and 272 MHz were detected for 2.2 and 1.1 um disks with thickness 40 nm, respectively. A resonance peak at 83 MHz was detected for 20-nm thick, 2-um diameter disks. The resonance frequencies exhibit weak field dependence, and scale as a function of the dot geometrical aspect ratio. The measured frequencies are well described by micromagnetic and analytical calculations that rely only on known properties of the dots (such as the dot diameter, thickness, saturation magnetization, and exchange stiffness constant) without any adjustable parameters. We find that the observed resonance originates from the translational motion of the magnetic vortex core.Comment: submitted to PRB, 17 pages, 5 Fig

    Quantifying spin Hall angles from spin pumping: Experiments and Theory

    Full text link
    Spin Hall effects intermix spin and charge currents even in nonmagnetic materials and, therefore, ultimately may allow the use of spin transport without the need for ferromagnets. We show how spin Hall effects can be quantified by integrating permalloy/normal metal (N) bilayers into a coplanar waveguide. A dc spin current in N can be generated by spin pumping in a controllable way by ferromagnetic resonance. The transverse dc voltage detected along the permalloy/N has contributions from both the anisotropic magnetoresistance (AMR) and the spin Hall effect, which can be distinguished by their symmetries. We developed a theory that accounts for both. In this way, we determine the spin Hall angle quantitatively for Pt, Au and Mo. This approach can readily be adapted to any conducting material with even very small spin Hall angles.Comment: 4 pages, 4 figure

    Spin Susceptibility of Ga-Stabilized delta-Pu Probed by {69}^Ga NMR

    Full text link
    Spin susceptibility of stabilized \delta phase in the Pu-Ga alloy is studied by measuring {69,71}^Ga NMR spectra and nuclear spin-lattice relaxation rate {69}T_{1}^{-1} in the temperature range 5 - 350 K. The shift ({69}^K) of the {69,71}^Ga NMR line and {69}^T_{1}^{-1} are controlled correspondingly by the static and the fluctuating in time parts of local magnetic field arisen at nonmagnetic gallium due to transferred hyperfine coupling with the nearest f electron environment of the more magnetic Pu. The nonmonotonic with a maximum around 150 K behavior of {69}^K(T) \chi_{s,5f}(T) is attributed to the peculiarities in temperature dependence of the f electron spin susceptibility \chi_{s,5f}(T) in \delta phase of plutonium. The temperature reversibility being observed in {69}^K(T) data provides strong evidence for an electronic instability developed with T in f electron bands near the Fermi energy and accompanied with a pseudogap-like decrease of \chi_{s,5f}(T) at T<150 K. The NMR data at high temperature are in favor of the mainly localized character of 5f electrons in \delta phase of the alloy with characteristic spin-fluctuation energy \Gamma(T) T^{0.35(5)}, which is close to $\Gamma(T) T^{0.5} predicted by Cox et al. [J. Appl. Phys. 57, 3166 (1985)] for 3D Kondo-system above T_Kondo}. The dynamic spin correlations of 5f electrons become essential to consider for {69}^T_{1}^{-1}(T) only at T<100 K. However, no NMR evidences favoring formation of the static magnetic order in \delta-Pu were revealed down to 5K .Comment: 6 pages, 4 figure

    Surface layering of liquids: The role of surface tension

    Full text link
    Recent measurements show that the free surfaces of liquid metals and alloys are always layered, regardless of composition and surface tension; a result supported by three decades of simulations and theory. Recent theoretical work claims, however, that at low enough temperatures the free surfaces of all liquids should become layered, unless preempted by bulk freezing. Using x-ray reflectivity and diffuse scattering measurements we show that there is no observable surface-induced layering in water at T=298 K, thus highlighting a fundamental difference between dielectric and metallic liquids. The implications of this result for the question in the title are discussed.Comment: 5 pages, 4 figures, to appear in Phys. Rev. B. 69 (2004

    Nucleocytoplasmic transport: a thermodynamic mechanism

    Full text link
    The nuclear pore supports molecular communication between cytoplasm and nucleus in eukaryotic cells. Selective transport of proteins is mediated by soluble receptors, whose regulation by the small GTPase Ran leads to cargo accumulation in, or depletion from the nucleus, i.e., nuclear import or nuclear export. We consider the operation of this transport system by a combined analytical and experimental approach. Provocative predictions of a simple model were tested using cell-free nuclei reconstituted in Xenopus egg extract, a system well suited to quantitative studies. We found that accumulation capacity is limited, so that introduction of one import cargo leads to egress of another. Clearly, the pore per se does not determine transport directionality. Moreover, different cargo reach a similar ratio of nuclear to cytoplasmic concentration in steady-state. The model shows that this ratio should in fact be independent of the receptor-cargo affinity, though kinetics may be strongly influenced. Numerical conservation of the system components highlights a conflict between the observations and the popular concept of transport cycles. We suggest that chemical partitioning provides a framework to understand the capacity to generate concentration gradients by equilibration of the receptor-cargo intermediary.Comment: in press at HFSP Journal, vol 3 16 text pages, 1 table, 4 figures, plus Supplementary Material include
    • 

    corecore