30 research outputs found

    Vascular β-amyloid and early astrocyte alterations impair cerebrovascular function and cerebral metabolism in transgenic arcAβ mice

    Get PDF
    Cerebrovascular lesions related to congophilic amyloid angiopathy (CAA) often accompany deposition of β-amyloid (Aβ) in Alzheimer’s disease (AD), leading to disturbed cerebral blood flow and cognitive dysfunction, posing the question how cerebrovascular pathology contributes to the pathology of AD. To address this question, we characterised the morphology, biochemistry and functionality of brain blood vessels in transgenic arctic β-amyloid (arcAβ) mice expressing human amyloid precursor protein (APP) with both the familial AD-causing Swedish and Arctic mutations; these mice are characterised by strong CAA pathology. Mice were analysed at early, mid and late-stage pathology. Expression of the glucose transporter GLUT1 at the blood–brain barrier (BBB) was significantly decreased and paralleled by impaired in vivo blood-to-brain glucose transport and reduced cerebral lactate release during neuronal activation from mid-stage pathology onwards. Reductions in astrocytic GLUT1 and lactate transporters, as well as retraction of astrocyte endfeet and swelling consistent with neurovascular uncoupling, preceded wide-spread β-amyloid plaque pathology. We show that CAA at later disease stages is accompanied by severe morphological alterations of brain blood vessels including stenoses, BBB leakages and the loss of vascular smooth muscle cells (SMCs). Together, our data establish that cerebrovascular and astrocytic pathology are paralleled by impaired cerebral metabolism in arcAβ mice, and that astrocyte alterations occur already at premature stages of pathology, suggesting that astrocyte dysfunction can contribute to early behavioural and cognitive impairments seen in these mice

    Day-to-Day Test–Retest Variability of CBF, CMRO2, and OEF Measurements Using Dynamic 15O PET Studies

    Get PDF
    Contains fulltext : 169592.pdf (publisher's version ) (Open Access)PURPOSE: We assessed test-retest variability of cerebral blood flow (CBF), cerebral blood volume (CBV), cerebral metabolic rate of oxygen (CMRO(2)), and oxygen extraction fraction (OEF) measurements derived from dynamic (15)O positron emission tomography (PET) scans. PROCEDURES: In seven healthy volunteers, complete test-retest (15)O PET studies were obtained; test-retest variability and left-to-right ratios of CBF, CBV, OEF, and CMRO(2) in arterial flow territories were calculated. RESULTS: Whole-brain test-retest coefficients of variation for CBF, CBV, CMRO(2), and OEF were 8.8%, 13.8%, 5.3%, and 9.3%, respectively. Test-retest variability of CBV left-to-right ratios was <7.4% across all territories. Corresponding values for CBF, CMRO(2), and OEF were better, i.e., <4.5%, <4.0%, and <1.4%, respectively. CONCLUSIONS: The test-retest variability of CMRO(2) measurements derived from dynamic (15)O PET scans is comparable to within-session test-retest variability derived from steady-state (15)O PET scans. Excellent regional test-retest variability was observed for CBF, CMRO(2), and OEF. Variability of absolute CBF and OEF measurements is probably affected by physiological day-to-day variability of CBF

    Synthesis of antimicrobial silver nanoparticles through a photomediated reaction in an aqueous environment

    No full text
    Rafał Banasiuk,1,* Joanna E Frackowiak,2,* Marta Krychowiak,1 Marta Matuszewska,1 Anna Kawiak,1 Magdalena Ziabka,3 Zofia Lendzion-Bielun,4 Magdalena Narajczyk,5 Aleksandra Krolicka1 1Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 2Department of Pathophysiology, Medical University of Gdansk, Gdansk, 3Faculty of Materials Science and Ceramics, Department of Ceramics and Refractories, AGH-University of Science and Technology, Krak&oacute;w, 4Institute of Chemical and Environment Engineering, West Pomeranian University of Technology, Szczecin, 5Faculty of Biology, Laboratory of Electron Microscopy, University of Gdansk, Gdansk, Poland *These authors contributed equally to&nbsp;this work Abstract: A fast, economical, and reproducible method for nanoparticle synthesis has been developed in our laboratory. The reaction is performed in an aqueous environment and utilizes light emitted by commercially available 1 W light-emitting diodes (&lambda; =420 nm) as the catalyst. This method does not require nanoparticle seeds or toxic chemicals. The irradiation process is carried out for a period of up to 10 minutes, significantly reducing the time required for synthesis as well as environmental impact. By modulating various reaction parameters silver nanoparticles were obtained, which were predominantly either spherical or cubic. The produced nanoparticles demonstrated strong antimicrobial activity toward the examined bacterial strains. Additionally, testing the effect of silver nanoparticles on the human keratinocyte cell line and human peripheral blood mononuclear cells revealed that their cytotoxicity may be limited by modulating the employed concentrations of nanoparticles. Keywords: antimicrobial activity, green synthesis, nanocubes, nanospheres&nbsp

    All-Carbon Electrode Consisting of Carbon Nanotubes on Graphite Foil for Flexible Electrochemical Applications

    No full text
    We demonstrate the fabrication of an all-carbon electrode by plasma-enhanced chemical vapor deposition for use in flexible electrochemical applications. The electrode is composed of vertically aligned carbon nanotubes that are grown directly on a flexible graphite foil. Being all-carbon, the simple fabrication process and the excellent electrochemical characteristics present an approach through which high-performance, highly-stable and cost-effective electrochemical applications can be achieved
    corecore