1,161 research outputs found

    PHYCOBILISOMES AND ISOLATED PHYCOBILIPROTEINS. EFFECT OF GLUTARDIALDEHYDE AND BENZOQUINONE ON FLUORESCENCE

    Get PDF
    The fluorescence of the biliproteins C-phycocyanin from Spirulina platensis, B-phycoerythrin from Porphyridium cruentum and of isolated whole P. cruentum phycobilisomes is quenched in the presence of glutardialdehyde (GA) or benzoquinone (BQ). The kinetics of fluorescence decrease thus induced is biphasic. If GA is used as a quencher, the fluorescence can be recovered at 77 K. Contrary to the GA-effect, only a minor recovery takes place with BQ at 77K, thus demonstrating a different mechanism of action of GA and BQ on biliprotein

    Extent of Pseudocapacitance in High‐Surface Area Vanadium Nitrides

    Full text link
    Early transition‐metal nitrides, especially vanadium nitride (VN), have shown promise for use in high energy density supercapacitors due to their high electronic conductivity, areal specific capacitance, and ability to be synthesized in high surface area form. Their further development would benefit from an understanding of their pseudocapacitive charge storage mechanism. In this paper, the extent of pseudocapacitance exhibited by vanadium nitride in aqueous electrolytes was investigated using cyclic voltammetry and electrochemical impedance spectroscopy. The pseudocapacitance contribution to the total capacitance in the nitride material was much higher than the double‐layer capacitance and ranged from 85 % in basic electrolyte to 87 % in acidic electrolyte. The mole of electrons transferred per VN material during pseudocapacitive charge storage was also evaluated. This pseudocapacitive charge‐storage is the key component in the full utilization of the properties of early‐transition metal nitrides for high‐energy density supercapacitors.Double‐layer capacitance vs. pseudocapacitance: the electrostatic double‐layer and pseudocapacitive charge storage mechanisms in high‐surface‐area vanadium nitride are investigated. The magnitude of the pseudocapacitive charge storage capacity and mole of electrons transferred are reported. The pseudocapacitive charge‐storage mechanism is the key component in maximizing the energy density of supercapacitors based on transition‐metal nitrides.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146597/1/batt201800050.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146597/2/batt201800050_am.pd

    Functional compensation of motor function in pre-symptomatic Huntington's disease

    Get PDF
    Involuntary choreiform movements are a clinical hallmark of Huntington's disease. Studies in clinically affected patients suggest a shift of motor activations to parietal cortices in response to progressive neurodegeneration. Here, we studied pre-symptomatic gene carriers to examine the compensatory mechanisms that underlie the phenomenon of retained motor function in the presence of degenerative change. Fifteen pre-symptomatic gene carriers and 12 matched controls performed button presses paced by a metronome at either 0.5 or 2 Hz with four fingers of the right hand whilst being scanned with functional magnetic resonance imaging. Subjects pressed buttons either in the order of a previously learnt 10-item finger sequence, from left to right, or kept still. Error rates ranged from 2% to 7% in the pre-symptomatic gene carriers and from 0.5% to 4% in controls, depending on the condition. No significant difference in task performance was found between groups for any of the conditions. Activations in the supplementary motor area (SMA) and superior parietal lobe differed with gene status. Compared with healthy controls, gene carriers showed greater activations of left caudal SMA with all movement conditions. Activations correlated with increasing speed of movement were greater the closer the gene carriers were to estimated clinical diagnosis, defined by the onset of unequivocal motor signs. Activations associated with increased movement complexity (i.e. with the pre-learnt 10-item sequence) decreased in the rostral SMA with nearing diagnostic onset. The left superior parietal lobe showed reduced activation with increased movement complexity in gene carriers compared with controls, and in the right superior parietal lobe showed greater activations with all but the most demanding movements. We identified a complex pattern of motor compensation in pre-symptomatic gene carriers. The results show that preclinical compensation goes beyond a simple shift of activity from premotor to parietal regions involving multiple compensatory mechanisms in executive and cognitive motor areas. Critically, the pattern of motor compensation is flexible depending on the actual task demands on motor contro

    The influence of microsatellite polymorphisms in sex steroid receptor genes ESR1, ESR2 and AR on sex differences in brain structure.

    Get PDF
    The androgen receptor (AR), oestrogen receptor alpha (ESR1) and oestrogen receptor beta (ESR2) play essential roles in mediating the effect of sex hormones on sex differences in the brain. Using Voxel-based morphometry (VBM) and gene sizing in two independent samples (discovery n ​= ​173, replication ​= ​61), we determine the common and unique influences on brain sex differences in grey (GM) and white matter (WM) volume between repeat lengths (n) of microsatellite polymorphisms AR(CAG)n, ESR1(TA)n and ESR2(CA)n. In the hypothalamus, temporal lobes, anterior cingulate cortex, posterior insula and prefrontal cortex, we find increased GM volume with increasing AR(CAG)n across sexes, decreasing ESR1(TA)n across sexes and decreasing ESR2(CA)n in females. Uniquely, AR(CAG)n was positively associated with dorsolateral prefrontal and orbitofrontal GM volume and the anterior corona radiata, left superior fronto-occipital fasciculus, thalamus and internal capsule WM volume. ESR1(TA)n was negatively associated with the left superior corona radiata, left cingulum and left inferior longitudinal fasciculus WM volume uniquely. ESR2(CA)n was negatively associated with right fusiform and posterior cingulate cortex uniquely. We thus describe the neuroanatomical correlates of three microsatellite polymorphisms of steroid hormone receptors and their relationship to sex differences

    The Neural Structures Expressing Perceptual Hysteresis in Visual Letter Recognition

    Get PDF
    AbstractPerception can change nonlinearly with stimulus contrast, and perceptual threshold may depend on the direction of contrast change. Such hysteresis effects in neurometric functions provide a signature of perceptual awareness. We recorded brain activity with functional neuroimaging in observers exposed to gradual contrast changes of initially hidden visual stimuli. Lateral occipital, frontal, and parietal regions all displayed both transient activations and hysteresis that correlated with change and maintenance of a percept, respectively. Medial temporal activity did not follow perception but increased during hysteresis and showed transient deactivations during perceptual transitions. These findings identify a set of brain regions sensitive to visual awareness and suggest that medial temporal structures may provide backward signals that account for neural and, thereby, perceptual hysteresis
    corecore