8 research outputs found

    The Draft Genome and Transcriptome of Panagrellus redivivus Are Shaped by the Harsh Demands of a Free-Living Lifestyle

    Get PDF
    Nematodes compose an abundant and diverse invertebrate phylum with members inhabiting nearly every ecological niche. Panagrellus redivivus (the “microworm”) is a free-living nematode frequently used to understand the evolution of developmental and behavioral processes given its phylogenetic distance to Caenorhabditis elegans. Here we report the de novo sequencing of the genome, transcriptome, and small RNAs of P. redivivus. Using a combination of automated gene finders and RNA-seq data, we predict 24,249 genes and 32,676 transcripts. Small RNA analysis revealed 248 microRNA (miRNA) hairpins, of which 63 had orthologs in other species. Fourteen miRNA clusters containing 42 miRNA precursors were found. The RNA interference, dauer development, and programmed cell death pathways are largely conserved. Analysis of protein family domain abundance revealed that P. redivivus has experienced a striking expansion of BTB domain-containing proteins and an unprecedented expansion of the cullin scaffold family of proteins involved in multi-subunit ubiquitin ligases, suggesting proteolytic plasticity and/or tighter regulation of protein turnover. The eukaryotic release factor protein family has also been dramatically expanded and suggests an ongoing evolutionary arms race with viruses and transposons. The P. redivivus genome provides a resource to advance our understanding of nematode evolution and biology and to further elucidate the genomic architecture leading to free-living lineages, taking advantage of the many fascinating features of this worm revealed by comparative studies

    Modulation of T Cell Metabolism and Function through Calcium Signaling.

    Get PDF
    As a vital second messenger in the activation of lymphocytes, the divalent cation Ca(2+) plays numerous roles in adaptive immune responses. Importantly, Ca(2+) signaling is essential for T cell activation, tolerance of self-antigens, and homeostasis. Supporting the essential role of Ca(2+) signaling in T cell biology, the Ca(2+) regulated protein phosphatase calcineurin is a key target of pharmacologic inhibition for preventing allograft rejection and for autoimmune therapy. Recent studies have highlighted the unique role of Stim1 and Orai1/2 proteins in the regulation of store-operated/calcium release activated calcium (CRAC) channels in the context of T cells. While Ca(2+) is known to modulate T cell activation via effects on calcineurin and its target, nuclear factor of activated T cells (NFAT), this second messenger also regulates other pathways, including protein kinase C, calmodulin kinases, and cytoskeletal proteins. Ca(2+) also modulates the unique metabolic changes that occur during in distinct T cell stages and subsets. Herein, we discuss the means by which Ca(2+) mobilization modulates cellular metabolism following T cell receptor ligation. Further, we highlight the crosstalk between mitochondrial metabolism, reactive oxygen species (ROS) generation, and CRAC channel activity. As a target of mitochondrial ROS and Ca(2+) regulation, we describe the involvement of the serine/threonine kinase DRAK2 in the context of these processes. Given the important roles for Ca(2+) dependent signaling and cellular metabolism in adaptive immune responses, the crosstalk between these pathways is likely to be important for the regulation of T cell activation, tolerance, and homeostasis

    Geological and inorganic materials

    No full text
    corecore