16 research outputs found

    Robustness of tissue oxygenation estimates by continuous wave space-resolved near infrared spectroscopy

    Get PDF
    Significance: Continuous wave near infrared spectroscopy (CW-NIRS) is widely exploited in clinics to estimate skeletal muscles and brain cortex oxygenation. Spatially resolved spectroscopy (SRS) is generally implemented in commercial devices. However, SRS suffers from two main limitations: the a priori assumption on the spectral dependence of the reduced scattering coefficient [ÎŒs'(λ)] and the modeling of tissue as homogeneous. Aim: We studied the accuracy and robustness of SRS NIRS. We investigated the errors in retrieving hemodynamic parameters, in particular tissue oxygen saturation (StO2), when ÎŒs'(λ) was varied from expected values, and when layered tissue was considered. Approach: We simulated hemodynamic variations mimicking real-life scenarios for skeletal muscles. Simulations were performed by exploiting the analytical solutions of the photon diffusion equation in different geometries: (1) semi-infinite homogeneous medium and constant ÎŒs'(λ); (2) semi-infinite homogeneous medium and linear changes in ÎŒs'(λ); (3) two-layered media with a superficial thickness s1=5, 7.5, 10 mm and constant ÎŒs'(λ). All simulated data were obtained at source-detector distances ρ=35, 40, 45 mm, and analyzed with the SRS approach to derive hemodynamic parameters (concentration of oxygenated and deoxygenated hemoglobin, total hemoglobin concentration, and tissue oxygen saturation, StO2) and their relative error. Results: Variations in ÎŒs'(λ) affect the estimated StO2 (up to ±10%), especially if changes are different at the two wavelengths. However, the main limitation of the SRS method is the presence of a superficial layer: errors strongly larger than 20% were retrieved for the estimated StO2 when the superficial thickness exceeds 5 mm. Conclusions: These results highlight the need for more sophisticated strategies (e.g., the use of multiple short and long distances) to reduce the influence of superficial tissues in retrieving hemodynamic parameters and warn the SRS users to be aware of the intrinsic limitation of this approach, particularly when exploited in the clinical environment

    Non-invasive monitoring of canine tissue hemodynamics undergoing a hyperbaric chamber treatment (HBO2) by time domain near infrared spectroscopy

    Get PDF
    A novel technique to treat different diseases from inflammation to poisonous bites from snakes on small animals is the hyperbaric chamber treatment [1]. Non-invasive and real-time hemodynamic monitoring of patient's tissue could be useful to quantify the effect of oxygen therapy on the patient. In this pilot study, we explored the possibility of noninvasively detecting canine tissues optical properties by Time Domain Near-Infrared Spectroscopy (TD-NIRS) and then retrieving hemodynamic parameters (deoxygenated and oxygenated hemoglobin molar concentration and tissue oxygen saturation) on different tissues (Triceps Brachii, Biceps Femoralis and Head) of dogs. Four dogs with different hair length and color undergoing to hyperbaric chamber treatment were measured before and after the treatment, on each of the three sites and on both sides of the animal. In Triceps Brachii and Biceps Femoralis we found an increase in the absorption coefficient for both wavelengths after the treatment, meaning that the total concentration of blood has increased. Different results were obtained in the head, where the total hemoglobin concentration is decreased. The use of TD-NIRS oximetry technology seems a clinically feasible means to assess tissue oxygenation in most of dogs, thanks to a sufficiently high signal-to-noise ratio that allows to evaluate the optical parameters and consequently the physiological parameters of the area under investigation. Moreover, the presence of hair and dark skin did not prevent the possibility of obtaining robust readings

    Genomic characterization and seroprevalence studies on alphaviruses in Uruguay

    Get PDF
    Alphaviruses (Togaviridae) are arboviruses frequently associated with emerging infectious diseases. In this study, we aimed to investigate the presence of alphaviruses in Uruguay by detecting the viral genome in mosquitoes and neutralizing antibodies in equines. A total of 3,575 mosquitoes were analyzed for alphavirus genome detection. Serologic studies were performed on 425 horse sera by plaque reduction neutralization test (PRNT80) against Venezuelan equine encephalitis virus (VEEV) subtype IAB, Pixuna virus (PIXV), Rio Negro virus (RNV), western equine encephalitis virus (WEEV), and Madariaga virus (MADV). Mosquitoes belonging to six genera were captured and 82.9% were identified as Culex pipiens. Two Cx. pipiens pools collected in Fray Bentos and Las Toscas localities were alphavirus positive, and phylogenetic analyses showed that the sequences grouped into two different clusters: the lineage I of eastern equine encephalitis virus and RNV (VEEV complex), respectively. Plaque reduction neutralization test assays showed antibodies against strains of the VEEV complex, MADV, and WEEV. Rio Negro virus was the most geographically widespread virus, showing higher seroprevalences (up to 20%). Seroprevalences against VEEV IAB ranged between 4.6% and 13%; antibodies against PIXV, WEEV, and MADV were less frequent (3–4%). In conclusion, RNV exhibited the highest seroprevalence in horses, a wide geographical distribution, and viral genome was detected in Cx. pipiens mosquitoes. Madariaga virus had a low seroprevalence in equines, but an epizootic lineage typical of North America was detected in Cx. pipiens mosquitoes. Taken together, our results show that alphaviruses are present in Uruguay with variable occurrence and geographical distribution being a potential threat for human and equine health

    Assessment of power spectral density of microvascular hemodynamics in skeletal muscles at very low and low-frequency via near-infrared diffuse optical spectroscopies

    Get PDF
    In this work, we used a hybrid time domain near-infrared spectroscopy (TD-NIRS) and diffuse correlation spectroscopy (DCS) device to retrieve hemoglobin and blood flow oscillations of skeletal muscle microvasculature. We focused on very low (VLF) and low-frequency (LF) oscillations (i.e., frequency lower than 0.145 Hz), that are related to myogenic, neurogenic and endothelial activities. We measured power spectral density (PSD) of blood flow and hemoglobin concentration in four muscles (thenar eminence, plantar fascia, sternocleidomastoid and forearm) of 14 healthy volunteers to highlight possible differences in microvascular hemodynamic oscillations. We observed larger PSDs for blood flow compared to hemoglobin concentration, in particular in case of distal muscles (i.e., thenar eminence and plantar fascia). Finally, we compared the PSDs measured on the thenar eminence of healthy subjects with the ones measured on a septic patient in the intensive care unit: lower power in the endothelial-dependent frequency band, and larger power in the myogenic ones were observed in the septic patient, in accordance with previous works based on laser doppler flowmetry

    Positive Selection Results in Frequent Reversible Amino Acid Replacements in the G Protein Gene of Human Respiratory Syncytial Virus

    Get PDF
    Human respiratory syncytial virus (HRSV) is the major cause of lower respiratory tract infections in children under 5 years of age and the elderly, causing annual disease outbreaks during the fall and winter. Multiple lineages of the HRSVA and HRSVB serotypes co-circulate within a single outbreak and display a strongly temporal pattern of genetic variation, with a replacement of dominant genotypes occurring during consecutive years. In the present study we utilized phylogenetic methods to detect and map sites subject to adaptive evolution in the G protein of HRSVA and HRSVB. A total of 29 and 23 amino acid sites were found to be putatively positively selected in HRSVA and HRSVB, respectively. Several of these sites defined genotypes and lineages within genotypes in both groups, and correlated well with epitopes previously described in group A. Remarkably, 18 of these positively selected tended to revert in time to a previous codon state, producing a “flip-flop” phylogenetic pattern. Such frequent evolutionary reversals in HRSV are indicative of a combination of frequent positive selection, reflecting the changing immune status of the human population, and a limited repertoire of functionally viable amino acids at specific amino acid sites

    Non-invasive brain cortex hemodynamic monitoring: A step towards motor disorder assessment via TD fNIRS

    Get PDF
    The state of the art in diagnosing motor impairments involves looking for anomalies as the patient performs particular movements. However, subjectivity of perception, which is influenced by the operator’s experience, has an impact on this procedure. A more rigorous approach involves monitoring cerebral response to motor stimuli by functional Magnetic Resonance Imaging (fMRI). However, given the bulkiness of current fMRI devices, this solution forces the subject to maintain a static condition, limiting the range of response. Moreover, the temporal resolution of such acquisition is often sub-optimal in following fast hemodynamic variations in short motor tasks. In this framework, time-domain functional near-infrared spectroscopy (TD fNIRS) that exploits the diffusion of picosecond laser pulses in cerebral tissue allows for quantitative and non-invasive acquisition of brain functional activity. Given the latest hardware development, it is now possible to exploit compact and wearable TD-fNIRS devices allowing for real time brain monitoring of unconstrained moving subjects. To assess the potential of the TD fNIRS technique in the field of motor disorders, we studied motor cortex hemodynamic response functions on healthy subjects performing standard physiotherapy protocols and simple motor tasks including goal-oriented and non-goal-oriented activities

    Reproducibility of identical solid phantoms

    Get PDF
    SIGNIFICANCE: Tissue-like solid phantoms with identical optical properties, known within tolerant uncertainty, are of crucial importance in diffuse optics for instrumentation assessment, interlaboratory comparison studies, industrial standards, and multicentric clinical trials. AIM: The reproducibility in fabrication of homogeneous solid phantoms is focused based on spectra measurements by instrument comparisons grounded on the time-resolved diffuse optics. APPROACH: Epoxy-resin and silicone phantoms are considered as matrices and both employ three different instruments for time-resolved diffuse spectroscopy within the spectral range of 540 to 1100 nm. In particular, we fabricated two batches of five phantoms each in epoxy resin and silicone. Then, we evaluated the intra- and interbatch variability with respect to the instrument precision, by considering the coefficient of variation (CV) of absorption and reduced scattering coefficients. RESULTS: We observed a similar precision for the three instruments, within 2% for repeated measurements on the same phantom. For epoxy-resin phantoms, the intra- and the interbatch variability reached the instrument precision limit, demonstrating a very good phantom reproducibility. For the silicone phantoms, we observed larger values for intra- and interbatch variability. In particular, at worst, for reduced scattering coefficient interbatch CV was about 5%. CONCLUSIONS: Results suggest that the fabrication of solid phantoms, especially considering epoxy-resin matrix, is highly reproducible, even if they come from different batch fabrications and are measured using different instruments

    Motor cortex hemodynamic response to goal-oriented and non-goal-oriented tasks in healthy subjects

    No full text
    Background: Motor disorders are one of the world’s major scourges, and neuromotor rehabilitation is paramount for prevention and monitoring plans. In this scenario, exercises and motor tasks to be performed by patients are crucial to follow and assess treatments’ progression and efficacy. Nowadays, in clinical environments, quantitative assessment of motor cortex activities during task execution is rare, due to the bulkiness of instrumentation and the need for immobility during measurements [e.g., functional magnetic resonance imaging (MRI)]. Functional near-infrared spectroscopy (fNIRS) can contribute to a better understanding of how neuromotor processes work by measuring motor cortex activity non-invasively in freely moving subjects. Aim: Exploit fNIRS to measure functional activation of the motor cortex area during arm-raising actions. Design: All subjects performed three different upper limbs motor tasks: arm raising (non-goal-oriented), arm raising and grasping (goal oriented), and assisted arm raising (passive task). Each task was repeated ten times. The block design for each task was divided into 5 seconds of baseline, 5 seconds of activity, and 15 seconds of recovery. Population: Sixteen healthy subjects (11 males and 5 females) with an average (+/− standard deviation) of 37.9 (+/− 13.0) years old. Methods: Cerebral hemodynamic responses have been recorded in two locations, motor cortex (activation area) and prefrontal cortex (control location) exploiting commercial time-domain fNIRS devices. Haemodynamic signals were analyzed, separating the brain cortex hemodynamic response from extracerebral hemodynamic variations. Results: The hemodynamic response was recorded in the cortical motor area for goal-oriented and not-goaloriented tasks, while no response was noticed in the control location (prefrontal cortex position). Conclusions: This study provides a basis for canonical upper limb motor cortex activations that can be potentially compared to pathological cerebral responses in patients. It also highlights the potential use of TD-fNIRS to study goal-oriented versus non-goaloriented motor tasks. Impact: the findings of this study may have implications for clinical rehabilitation by providing a better understanding of the neural mechanisms underlying goal-oriented versus non-goal-oriented motor tasks. This may lead to more effective rehabilitation strategies for individuals with motor disorders and a more effective diagnosis of motor dysfunction supported by objective and quantitative neurophysiological readings
    corecore