17 research outputs found

    Solubilizing poorly soluble antimy cotic agents by emulsification via a solvenent-free process

    No full text
    The purpose of this study was to formulate itraconazole and ketoconazole as oil/water emulsions for parenteral delivery by using a solvent-free homogenization process, namely SolEmuls (solubilization by emulsification) technology. The drugs were incorporated in the commercial emulsion Lipofundin MCT 20%, composed of a medium-chain triglyceride/long-chain triglyceride (MCT/LCT) oil phase (1∶1) and stabilized with 1.2% lecithin. Different parameters such as drug-loading capacity, long-term physical stability, and completeness of drug dissolution were investigated. Up to 10.0 mg/mL complete drug dissolution was achieved with itraconazole; at 20 mg/mL hybrid dispersion was obtained. Itraconazole-loaded emulsions were physically stable for 9 months (data up to now). Ketoconazole showed physical instability in the Lipofundin emulsion, which was stabilized with only 1.2% lecithin. Stabilization of ketoconazole-loaded emulsions was achieved using additionally Tween 80 as steric stabilizer. Higher concentrations of ketoconazole (ie, 10.0 mg/mL concentrated ketoconazole emulsions) were also produced with additional 2.0% Tween 80. Ketoconazole-loaded emulsions, 1 mg/mL, which were stabilized with 2.0% Tween 80, were stable for a period of 6 months. It can be concluded, after formulating amphotericin B and carbamazepine with SolEmuls technology, that SolEmuls was also applicable to the antimycotic agents itraconazole and ketoconazole, yielding IV-applicable emulsions with cost-effective production technologies

    Diclofenac-β-cyclodextrin binary systems: Physicochemical characterization and in vitro dissolution and diffusion studies

    No full text
    The aim of this work was to study the influence of β-cyclodextrin (β-CD) on the biopharmaceutic properties of diclofenac (DCF). To this purpose the physicochemical characterization of diclofenac-β-cyclodextrin binary systems was performed both in solution and solid state. Solid phase characterization was performed using differential scanning calorimetry (DSC), powder x-ray diffractometry (XRD), and Fourier transform infrared spectroscopy (FTIR). Phase solubility analyses, and in vitro permeation experiments through a synthetic membrane were performed in solution. Moreover, DCF/β-CD interactions were studied in DMSO by1H nuclear magnetic resonance (NMR) spectroscopy. The effects of different preparation methods and drug-to-β-CD molar ratios were also evaluated. Phase solubility studies revealed 1∶1 M complexation of DCF when the freeze-drying method was used for the preparation of the binary system. The true inclusion for the freeze-dried binary system was confirmed by1H NMR spectroscopy, DSC, powder XRD, and IR studies. The dissolution study revealed that the drug dissolution rate was improved by the presence of CDs and the highest and promptest release was obtained with the freeze-dried binary system. Diffusion experiments through a silicone membrane showed that DCF diffusion was higher from the saturated drug solution (control) than the freeze-dried inclusion complexes, prepared using different DCF-β-CD molar ratios. However, the presence of the inclusion complex was able to stabilize the system giving rise to a more regular diffusion profile

    UNDERSTANDING THE INTERACTIONS BETWEEN ARTEMISININ AND CYCLODEXTRINS: SPECTROSCOPIC STUDIES AND MOLECULAR MODELING

    Full text link
    Artemisinin extracted from Artemisia annua L. proved to be currently, with its derivatives, the most effective drugs against simple and severe malaria, and is also effective on the chloroquine-resistant forms. The advantageous effect of some cyclodextrins (CDs) on artemisinin solubilization was demonstrated by different authors. The present work aims to confirm the effect of several CDs on artemisinin solubilization and to analyse the complexes formed between these CDs and artemisinin in order to understand their solubilization capacities. In this context, solubility studies, liquid-state NMR spectroscopy ( 1H NMR studies and ROESY experiments) as well as theoretical studies (molecular modeling) have been performed. Randomly methylated-βCD, Crysmeb® and hydroxypropylated-γCD were also found to improve the aqueous solubilization of artemisinin as well as βCD, γCD and hydroxypropylated-βCD whose effects were already demonstrated. The best solubilization ability was found with Crysmeb®. The spectroscopic studies showed a lot of interactions between artemisinin and all the CDs studied, but mainly outside the cavity. Molecular modeling confirmed that artemisinin and CDs formed non-inclusion complexe

    Silica Materials Containing Cyclodextrin for Pollutant Removal

    No full text
    This chapter reviews the use of cyclodextrin-silica hybrid systems and cyclodextrin-functionalized silica used as adsorbents or filters for the removal of inorganic and organic pollutants from aqueous solutions in solid-phase extraction and adsorption-oriented processes. Actually, there is a need to develop efficient processes for the synthesis and application of multifunctional silica-based materials for pollutant removal by adsorption or filtration, and for sample purification and concentration using solid-phase extraction.On one hand, of silica-based adsorbents are low-cost, robust inorganic solids having large surface areas, high porosity, and excellent mechanical, physical and chemical properties, and wide possibilities of functionalization due to silanol reactivity. On the other hand, cyclodextrins are natural molecules obtained from the enzymatic degradation of starch. They belong to the family of cage molecules due to their structure which is composed of a hydrophobic cavity that can encapsulate other molecules. Cyclodextrin-functionalized silicas usually display improved access to the binding sites because the moieties are located on the external surface of the material. In cyclodextrin-silica hybrid systems prepared through sol-gel or self-assembly process, cyclodextrin molecules are located within the framework of nanoporous silicas. Here, both high cyclodextrin loadings, robust structures and higher surface area are observed. Cyclodextrin-based silica materials have strong binding affinities for chemical substances such as metal ions, dyes, pesticides, and drugs
    corecore