50 research outputs found

    ABPS: An R Package for Calculating the Abnormal Blood Profile Score

    Get PDF
    The Abnormal Blood Profile Score (ABPS) is used to identify blood doping in sport. It combines seven hematological markers, including hemoglobin level, reticulocytes percent, and haematocrit level, using two different machine learning algorithms in order to create a single score that has a better ability to identify doping than each parameter taken alone. The resulting score allows the detection of several types of doping using a single score and is part of the current Athlete Biological Passport program managed by World Anti-Doping Agency (WADA). We describe ≪ ABPS ≫, an R package that allows the calculation of this score. This is the first software implementation calculating this score that is released publicly. The package also contains functions to calculate the OFF-score (another score used for detection of doping), as well as several test datasets. The package is useful for laboratories conducting anti-doping analyses and for researchers working on anti-doping research projects. In particular, it has been successfully used in projects estimating the prevalence of blood doping

    The Rapamycin-sensitive Phosphoproteome Reveals That TOR Controls Protein Kinase A Toward Some But Not All Substrates

    Get PDF
    In yeast TOR and PKA pathways both control cell growth but how TORC1 and PKA signaling are linked is unknown. Here we show that TORC1 inhibition prevents the phosphorylation of some but not all PKA targets. We further demonstrate that TORC1 controls PKA by inhibiting the phosphorylation of the PKA regulatory subunit BCY1 by the MAP kinase MPK1

    Tissue- and sex-specific small RNAomes reveal sex differences in response to the environment.

    Get PDF
    RNA interference (RNAi) related pathways are essential for germline development and fertility in metazoa and can contribute to inter- and trans-generational inheritance. In the nematode Caenorhabditis elegans, environmental double-stranded RNA provided by feeding can lead to heritable changes in phenotype and gene expression. Notably, transmission efficiency differs between the male and female germline, yet the underlying mechanisms remain elusive. Here we use high-throughput sequencing of dissected gonads to quantify sex-specific endogenous piRNAs, miRNAs and siRNAs in the C. elegans germline and the somatic gonad. We identify genes with exceptionally high levels of secondary 22G RNAs that are associated with low mRNA expression, a signature compatible with silencing. We further demonstrate that contrary to the hermaphrodite germline, the male germline, but not male soma, is resistant to environmental RNAi triggers provided by feeding, in line with previous work. This sex-difference in silencing efficacy is associated with lower levels of gonadal RNAi amplification products. Moreover, this tissue- and sex-specific RNAi resistance is regulated by the germline, since mutant males with a feminized germline are RNAi sensitive. This study provides important sex- and tissue-specific expression data of miRNA, piRNA and siRNA as well as mechanistic insights into sex-differences of gene regulation in response to environmental cues.This work was funded by grants from the Swiss National Science Foundation and an advanced European Research Council grant to Laurent Keller, grants from Cancer Research UK (C13474/A18583, C6946/A14492) and the Wellcome Trust (104640/ Z/14/Z, 092096/Z/10/Z) to Eric A. Miska, and grants from the National Institutes of Health to Sean M. West (NIGMSNHRA 5F32GM100614) and to Fabio Piano and Kristin Gunsalus (NHGRI U01 HG004276, NICHD R01 HD046236), and by research funding from New York University Abu Dhabi to Fabio Piano and Kristin Gunsalus

    Identification of a novel PPARβ/δ/miR-21-3p axis in UV-induced skin inflammation.

    Get PDF
    Although excessive exposure to UV is widely recognized as a major factor leading to skin perturbations and cancer, the complex mechanisms underlying inflammatory skin disorders resulting from UV exposure remain incompletely characterized. The nuclear hormone receptor PPARβ/δ is known to control mouse cutaneous repair and UV-induced skin cancer development. Here, we describe a novel PPARβ/δ-dependent molecular cascade involving TGFβ1 and miR-21-3p, which is activated in the epidermis in response to UV exposure. We establish that the passenger miRNA miR-21-3p, that we identify as a novel UV-induced miRNA in the epidermis, plays a pro-inflammatory function in keratinocytes and that its high level of expression in human skin is associated with psoriasis and squamous cell carcinomas. Finally, we provide evidence that inhibition of miR-21-3p reduces UV-induced cutaneous inflammation in ex vivo human skin biopsies, thereby underlining the clinical relevance of miRNA-based topical therapies for cutaneous disorders

    Integrative analysis of RUNX1 downstream pathways and target genes

    Get PDF
    Background: The RUNX1 transcription factor gene is frequently mutated in sporadic myeloid and lymphoid leukemia through translocation, point mutation or amplification. It is also responsible for a familial platelet disorder with predisposition to acute myeloid leukemia (FPD-AML). The disruption of the largely unknown biological pathways controlled by RUNX1 is likely to be responsible for the development of leukemia. We have used multiple microarray platforms and bioinformatic techniques to help identify these biological pathways to aid in the understanding of why RUNX1 mutations lead to leukemia. Results: Here we report genes regulated either directly or indirectly by RUNX1 based on the study of gene expression profiles generated from 3 different human and mouse platforms. The platforms used were global gene expression profiling of: 1) cell lines with RUNX1 mutations from FPD-AML patients, 2) over-expression of RUNX1 and CBF[Beta], and 3) Runx1 knockout mouse embryos using either cDNA or Affymetrix microarrays. We observe that our datasets (lists of differentially expressed genes) significantly correlate with published microarray data from sporadic AML patients with mutations in either RUNX1 or its cofactor, CBF[Beta]. A number of biological processes were identified among the differentially expressed genes and functional assays suggest that heterozygous RUNX1 point mutations in patients with FPD-AML impair cell proliferation, microtubule dynamics and possibly genetic stability. In addition, analysis of the regulatory regions of the differentially expressed genes has for the first time systematically identified numerous potential novel RUNX1 target genes. Conclusion: This work is the first large-scale study attempting to identify the genetic networks regulated by RUNX1, a master regulator in the development of the hematopoietic system and leukemia. The biological pathways and target genes controlled by RUNX1 will have considerable importance in disease progression in both familial and sporadic leukemia as well as therapeutic implications

    Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures

    Get PDF
    INTRODUCTION: Breast cancer subtyping and prognosis have been studied extensively by gene expression profiling, resulting in disparate signatures with little overlap in their constituent genes. Although a previous study demonstrated a prognostic concordance among gene expression signatures, it was limited to only one dataset and did not fully elucidate how the different genes were related to one another nor did it examine the contribution of well-known biological processes of breast cancer tumorigenesis to their prognostic performance. METHOD: To address the above issues and to further validate these initial findings, we performed the largest meta-analysis of publicly available breast cancer gene expression and clinical data, which are comprised of 2,833 breast tumors. Gene coexpression modules of three key biological processes in breast cancer (namely, proliferation, estrogen receptor [ER], and HER2 signaling) were used to dissect the role of constituent genes of nine prognostic signatures. RESULTS: Using a meta-analytical approach, we consolidated the signatures associated with ER signaling, ERBB2 amplification, and proliferation. Previously published expression-based nomenclature of breast cancer 'intrinsic' subtypes can be mapped to the three modules, namely, the ER-/HER2- (basal-like), the HER2+ (HER2-like), and the low- and high-proliferation ER+/HER2- subtypes (luminal A and B). We showed that all nine prognostic signatures exhibited a similar prognostic performance in the entire dataset. Their prognostic abilities are due mostly to the detection of proliferation activity. Although ER- status (basal-like) and ERBB2+ expression status correspond to bad outcome, they seem to act through elevated expression of proliferation genes and thus contain only indirect information about prognosis. Clinical variables measuring the extent of tumor progression, such as tumor size and nodal status, still add independent prognostic information to proliferation genes. CONCLUSION: This meta-analysis unifies various results of previous gene expression studies in breast cancer. It reveals connections between traditional prognostic factors, expression-based subtyping, and prognostic signatures, highlighting the important role of proliferation in breast cancer prognosis.Journal ArticleMeta-AnalysisResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Protein-Binding Microarray Analysis of Tumor Suppressor AP2α Target Gene Specificity

    Get PDF
    Cheap and massively parallel methods to assess the DNA-binding specificity of transcription factors are actively sought, given their prominent regulatory role in cellular processes and diseases. Here we evaluated the use of protein-binding microarrays (PBM) to probe the association of the tumor suppressor AP2α with 6000 human genomic DNA regulatory sequences. We show that the PBM provides accurate relative binding affinities when compared to quantitative surface plasmon resonance assays. A PBM-based study of human healthy and breast tumor tissue extracts allowed the identification of previously unknown AP2α target genes and it revealed genes whose direct or indirect interactions with AP2α are affected in the diseased tissues. AP2α binding and regulation was confirmed experimentally in human carcinoma cells for novel target genes involved in tumor progression and resistance to chemotherapeutics, providing a molecular interpretation of AP2α role in cancer chemoresistance. Overall, we conclude that this approach provides quantitative and accurate assays of the specificity and activity of tumor suppressor and oncogenic proteins in clinical samples, interfacing genomic and proteomic assays

    Phenotypic Consequences of Copy Number Variation: Insights from Smith-Magenis and Potocki-Lupski Syndrome Mouse Models

    Get PDF
    The characterization of mice with different number of copies of the same genomic segment shows that structural changes influence the phenotypic outcome independently of gene dosage

    High Specificity of Single Inertial Sensor-Supplemented Timed Up and Go Test for Assessing Fall Risk in Elderly Nursing Home Residents

    No full text
    The Timed Up and Go test (TUG) is commonly used to estimate the fall risk in the elderly. Several ways to improve the predictive accuracy of TUG (cameras, multiple sensors, other clinical tests) have already been proposed. Here, we added a single wearable inertial measurement unit (IMU) to capture the residents’ body center-of-mass kinematics in view of improving TUG’s predictive accuracy. The aim is to find out which kinematic variables and residents’ characteristics are relevant for distinguishing faller from non-faller patients. Data were collected in 73 nursing home residents with the IMU placed on the lower back. Acceleration and angular velocity time series were analyzed during different subtasks of the TUG. Multiple logistic regressions showed that total time required, maximum angular velocity at the first half-turn, gender, and use of a walking aid were the parameters leading to the best predictive abilities of fall risk. The predictive accuracy of the proposed new test, called i + TUG, reached a value of 74.0%, with a specificity of 95.9% and a sensitivity of 29.2%. By adding a single wearable IMU to TUG, an accurate and highly specific test is therefore obtained. This method is quick, easy to perform and inexpensive. We recommend to integrate it into daily clinical practice in nursing homes
    corecore