24 research outputs found

    Grabbing your ear: rapid auditory-somatosensory multisensory interactions in low-level sensory cortices are not constrained by stimulus alignment.

    Get PDF
    Multisensory interactions are observed in species from single-cell organisms to humans. Important early work was primarily carried out in the cat superior colliculus and a set of critical parameters for their occurrence were defined. Primary among these were temporal synchrony and spatial alignment of bisensory inputs. Here, we assessed whether spatial alignment was also a critical parameter for the temporally earliest multisensory interactions that are observed in lower-level sensory cortices of the human. While multisensory interactions in humans have been shown behaviorally for spatially disparate stimuli (e.g. the ventriloquist effect), it is not clear if such effects are due to early sensory level integration or later perceptual level processing. In the present study, we used psychophysical and electrophysiological indices to show that auditory-somatosensory interactions in humans occur via the same early sensory mechanism both when stimuli are in and out of spatial register. Subjects more rapidly detected multisensory than unisensory events. At just 50 ms post-stimulus, neural responses to the multisensory 'whole' were greater than the summed responses from the constituent unisensory 'parts'. For all spatial configurations, this effect followed from a modulation of the strength of brain responses, rather than the activation of regions specifically responsive to multisensory pairs. Using the local auto-regressive average source estimation, we localized the initial auditory-somatosensory interactions to auditory association areas contralateral to the side of somatosensory stimulation. Thus, multisensory interactions can occur across wide peripersonal spatial separations remarkably early in sensory processing and in cortical regions traditionally considered unisensory

    Reproducibility in the absence of selective reporting : An illustration from large-scale brain asymmetry research

    Get PDF
    Altres ajuts: Max Planck Society (Germany).The problem of poor reproducibility of scientific findings has received much attention over recent years, in a variety of fields including psychology and neuroscience. The problem has been partly attributed to publication bias and unwanted practices such as p-hacking. Low statistical power in individual studies is also understood to be an important factor. In a recent multisite collaborative study, we mapped brain anatomical left-right asymmetries for regional measures of surface area and cortical thickness, in 99 MRI datasets from around the world, for a total of over 17,000 participants. In the present study, we revisited these hemispheric effects from the perspective of reproducibility. Within each dataset, we considered that an effect had been reproduced when it matched the meta-analytic effect from the 98 other datasets, in terms of effect direction and significance threshold. In this sense, the results within each dataset were viewed as coming from separate studies in an "ideal publishing environment," that is, free from selective reporting and p hacking. We found an average reproducibility rate of 63.2% (SD = 22.9%, min = 22.2%, max = 97.0%). As expected, reproducibility was higher for larger effects and in larger datasets. Reproducibility was not obviously related to the age of participants, scanner field strength, FreeSurfer software version, cortical regional measurement reliability, or regional size. These findings constitute an empirical illustration of reproducibility in the absence of publication bias or p hacking, when assessing realistic biological effects in heterogeneous neuroscience data, and given typically-used sample sizes

    Setting boundaries: brain dynamics of modal and amodal illusory shape completion in humans.

    Get PDF
    Normal visual perception requires differentiating foreground from background objects. Differences in physical attributes sometimes determine this relationship. Often such differences must instead be inferred, as when two objects or their parts have the same luminance. Modal completion refers to such perceptual "filling-in" of object borders that are accompanied by concurrent brightness enhancement, in turn termed illusory contours (ICs). Amodal completion is filling-in without concurrent brightness enhancement. Presently there are controversies regarding whether both completion processes use a common neural mechanism and whether perceptual filling-in is a bottom-up, feedforward process initiating at the lowest levels of the cortical visual pathway or commences at higher-tier regions. We previously examined modal completion (Murray et al., 2002) and provided evidence that the earliest modal IC sensitivity occurs within higher-tier object recognition areas of the lateral occipital complex (LOC). We further proposed that previous observations of IC sensitivity in lower-tier regions likely reflect feedback modulation from the LOC. The present study tested these proposals, examining the commonality between modal and amodal completion mechanisms with high-density electrical mapping, spatiotemporal topographic analyses, and the local autoregressive average distributed linear inverse source estimation. A common initial mechanism for both types of completion processes (140 msec) that manifested as a modulation in response strength within higher-tier visual areas, including the LOC and parietal structures, is demonstrated, whereas differential mechanisms were evident only at a subsequent time period (240 msec), with amodal completion relying on continued strong responses in these structures

    The brain uses single-trial multisensory memories to discriminate without awareness.

    No full text
    Multisensory experiences enhance perceptions and facilitate memory retrieval processes, even when only unisensory information is available for accessing such memories. Using fMRI, we identified human brain regions involved in discriminating visual stimuli according to past multisensory vs. unisensory experiences. Subjects performed a completely orthogonal task, discriminating repeated from initial image presentations intermixed within a continuous recognition task. Half of initial presentations were multisensory, and all repetitions were exclusively visual. Despite only single-trial exposures to initial image presentations, accuracy in indicating image repetitions was significantly improved by past auditory-visual multisensory experiences over images only encountered visually. Similarly, regions within the lateral-occipital complex-areas typically associated with visual object recognition processes-were more active to visual stimuli with multisensory than unisensory pasts. Additional differential responses were observed in the anterior cingulate and frontal cortices. Multisensory experiences are registered by the brain even when of no immediate behavioral relevance and can be used to categorize memories. These data reveal the functional efficacy of multisensory processing

    Propagating neocortical gamma bursts are coordinated by traveling alpha waves

    Get PDF
    Contains fulltext : 122913.pdf (publisher's version ) (Open Access)Neocortical neuronal activity is characterized by complex spatiotemporal dynamics. Although slow oscillations have been shown to travel over space in terms of consistent phase advances, it is unknown how this phenomenon relates to neuronal activity in other frequency bands. We here present electrocorticographic data from three male and one female human subject and demonstrate that gamma power is phase locked to traveling alpha waves. Given that alpha activity has been proposed to coordinate neuronal processing reflected in the gamma band, we suggest that alpha waves are involved in coordinating neuronal processing in both space and time.6 p

    Abnormal timing of visual feedback processing in young adults with schizophrenia

    No full text
    Background: Recent studies have shown that schizophrenia is characterized by visual perceptual deficits, especially in the ability to integrate stimulus details into a global percept. Also, several studies have found amplitude attenuation of the visual P1 component of the event-related brain potential (ERP), probably indicating impaired visual feedforward processing in schizophrenia. However, there is little knowledge on the role of feedbackward processing in this group. This question is of importance, as recent studies indicate that feedback processing is critical in stimulus integration. Methods: In the present study we tested whether there is evidence for atypical recurrent processing in a group of 14 young adults with recent-onset schizophrenia (mean age 21.7 years, mean TIQ 92.7) and 17 age and IQ matched control subjects, all males. To achieve this aim, we used a texture segregation task and measured ERP activity concurrently. Results: We found normal amplitudes, but longer latencies of activity related to feedbackward processing in the schizophrenia group. In addition, we found enhanced occipito-temporal activity around 160 ms that is probably the reflection of increased detail processing. Discussion: We show for the first time evidence for abnormal timing in feedback activity related to visual perception in subjects with schizophrenia. It is hypothesized that this latency effect is the functional reflection of abnormal structural connectivity in this group, and might result in increased processing of stimulus detail
    corecore