36,819 research outputs found

    Molecular bases for unity and diversity in organic evolution

    Get PDF
    The origin of biological information has been ascribed at various times to DNA, RNA, or protein. The origin of nucleic acids without the action of prior informed protein has not been supported by plausible experiments, although such possibilities have been examined. The behavior of thermal proteins and of the microspheres selfassembled therefrom explain the origin of the first cells, the first membrane, the first reproduction cycle, ancient metabolism including ATP-aided synthesis of peptides and polynucleotides, growth, bioelectricity, and polybiofunctionality in general

    Amino acids precursors in lunar finds

    Get PDF
    The consistent pattern is discussed of amino acids found in lunar dust from Apollo missions. The evidence indicates that compounds yielding amino acids were implanted into the surface of the moon by the solar wind, and the kind and amounts of amino acids found on the moon are closely similar to those found in meteorites. It is concluded that there is a common cosmochemical pattern for the moom and meteorites, and this offers evidence of a common course of cosmochemical reactions for carbon

    High-resolution absorption spectroscopy of the circumgalactic medium of the Milky Way

    Full text link
    In this article we discuss the importance of high-resolution absorption spectroscopy for our understanding of the distribution and physical nature of the gaseous circumgalactic medium (CGM) that surrounds the Milky Way. Observational and theoretical studies indicate a high complexity of the gas kinematics and an extreme multi-phase nature of the CGM in low-redshift galaxies. High-precision absorption-line measurements of the Milky Way's gas environment thus are essential to explore fundamental parameters of circumgalactic gas in the local Universe, such as mass, chemical composition, and spatial distribution. We shortly review important characteristics of the Milky Way's CGM and discuss recent results from our multi-wavelength observations of the Magellanic Stream. Finally, we discuss the potential of studying the warm-hot phase of the Milky Way's CGM by searching for extremely weak [FeX] l6374.5 and [FeIVX] l5302.9 absorption in optical QSO spectra.Comment: 7 pages, 4 figures; accepted for publication in Astronomical Notes (paper version of a talk presented at the 10th Thinkshop, Potsdam, 2013

    A Positivity Theorem for Gravitational Tension in Brane Spacetimes

    Full text link
    We study transverse asymptotically flat spacetimes without horizons that arise from brane matter sources. We assume that asymptotically there is a spatial translation Killing vector that is tangent to the brane. Such spacetimes are characterized by a tension, analogous to the ADM mass, which is a gravitational charge associated with the asymptotic spatial translation Killing vector. Using spinor techniques, we prove that the purely gravitational contribution to the spacetime tension is positive definite.Comment: 8+1 page

    Staying in place during times of change in Arctic Alaska: The implications of attachment,alternatives, and buffering

    Get PDF
    The relationship between stability and change in social-ecological systems has received considerable attention in recent years, including the expectation that significant environmental changes will drive observable consequences for individuals, communities, and populations. Migration, as one example of response to adverse economic or environmental changes, has been observed in many places, including parts of the Far North. In Arctic Alaska, a relative lack of demographic or migratory response to rapid environmental and other changes has been observed. To understand why Arctic Alaska appears different, we draw on the literature on environmentally driven migration, focusing on three mechanisms that could account for the lack of response: attachment, the desire to remain in place, or the inability to relocate successfully; alternatives, ways to achieve similar outcomes through different means; and buffering, the reliance on subsidies or use of reserves to delay impacts. Each explanation has different implications for research and policy, indicating a need to further explore the relative contribution that each makes to a given situation in order to develop more effective responses locally and regionally. Given that the Arctic is on the front lines of climate change, these explanations are likely relevant to the ways changes play out in other parts of the world. Our review also underscores the importance of further attention to the details of social dynamics in climate change impacts and responses

    The Radio Afterglow and Host Galaxy of the Dark GRB 020819

    Full text link
    Of the fourteen gamma-ray bursts (GRBs) localized to better than 2' radius with the SXC on HETE-2, only two lack optical afterglow detections, and the high recovery rate among this sample has been used to argue that the fraction of truly dark bursts is ~10%. While a large fraction of earlier dark bursts can be explained by the failure of ground-based searches to reach appropriate limiting magnitudes, suppression of the optical light of these SXC dark bursts seems likely. Here we report the discovery and observation of the radio afterglow of GRB 020819, an SXC dark burst, which enables us to identify the likely host galaxy (probability of 99.2%) and hence the redshift (z=0.41) of the GRB. The radio light curve is qualitatively similar to that of several other radio afterglows, and may include an early-time contribution from the emission of the reverse shock. The proposed host is a bright R = 19.5 mag barred spiral galaxy, with a faint R ~ 24.0 mag "blob'' of emission, 3" from the galaxy core (16 kpc in projection), that is coincident with the radio afterglow. Optical photometry of the galaxy and blob, beginning 3 hours after the burst and extending over more than 100 days, establishes strong upper limits to the optical brightness of any afterglow or associated supernova. Combining the afterglow radio fluxes and our earliest R-band limit, we find that the most likely afterglow model invokes a spherical expansion into a constant-density (rather than stellar wind-like) external environment; within the context of this model, a modest local extinction of A_V ~ 1 mag is sufficient to suppress the optical flux below our limits.Comment: 7 pages, 2 figures. ApJ, in press. For more info on dark bursts, see http://www.astro.ku.dk/~pallja/dark.htm

    Building defect detection: External versus internal thermography

    Get PDF
    publisher: Elsevier articletitle: Building defect detection: External versus internal thermography journaltitle: Building and Environment articlelink: http://dx.doi.org/10.1016/j.buildenv.2016.06.011 content_type: article copyright: © 2016 Elsevier Ltd. All rights reserved

    Anthropic Explanation of the Dark Matter Abundance

    Full text link
    I use Bousso's causal diamond measure to make a statistical prediction for the dark matter abundance, assuming an axion with a large decay constant f_a >> 10^{12} GeV. Using a crude approximation for observer formation, the prediction agrees well with observation: 30% of observers form in regions with less dark matter than we observe, while 70% of observers form in regions with more dark matter. Large values of the dark matter ratio are disfavored by an elementary effect: increasing the amount of dark matter while holding fixed the baryon to photon ratio decreases the number of baryons inside one horizon volume. Thus the prediction is rather insensitive to assumptions about observer formation in universes with much more dark matter than our own. The key assumption is that the number of observers per baryon is roughly independent of the dark matter ratio for ratios near the observed value.Comment: 10 pages; v3: published version, references adde
    corecore