1,845 research outputs found
Localization and habituation of sensory evoked DC responses in cat cortex
Using calomel electrodes and chopper stabilized amplifiers, sensory evoked d-c responses at the cortical surface were recorded from the primary visual, secondary visual, auditory and somatic areas of the left hemisphere in thirty acutely prepared immobilized cats. The stimuli were light from an incandescent bulb, a hissing sound and a mild shock. Responses were quantified on line by automatic computation of area under the response and by waveform averaging. All four cortical loci could respond to all three stimuli, but by an algebraic analysis of response amplitudes the responses could be fractionated into two components, one of which was localized, the other diffuse. The local component is stimulus bound and is distributed such that the response of the classical sensory area relevant to the stimulus is negative to the response of the other sensory areas, regardless of the over-all response polarity. The diffuse component is on the average, negative in polarity and has a longer latency and duration than the local component. It occurs primarily as an aftereffect of stimulation and is more readily evoked by shock and hiss than by light. The diffure component and the local component are, therefore, distinguished from one another both by their localization and their time course. Both the diffuse component and the local component showed considerable habituation during a 1.5 to 2.0 hour long series of fifty stimulations. The responses probably reflect the joint action of both specific and diffuse cortical inputs, but it is unlikely that they influence the production of action potentials in cortical neurons.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/33421/1/0000823.pd
Elevated temperature repetitive micro-scratch testing of AlCrN, TiAlN and AlTiN PVD coatings
In developing advanced wear-resistant coatings for tribologically extreme highly loaded applications such as high speed metal cutting a critical requirement is to investigate their behaviour at elevated temperature since the cutting process generates frictional heat which can raise the temperature in the cutting zone to 700–900 °C or more. High temperature micro-tribological tests provide severe tests for coatings that can simulate high contact pressure sliding/abrasive contacts at elevated temperature. In this study ramped load micro-scratch tests and repetitive micro-scratch tests were performed at 25 and 500 °C on commercial monolayer coatings (AlCrN, TiAlN and AlTiN) deposited on cemented carbide cutting tool inserts. AlCrN exhibited the highest critical load for film failure in front of the moving scratch probe at both temperatures but it was prone to an unloading failure behind the moving probe. Scanning electron microscopy showed significant chipping outside the scratch track which was more extensive for AlCrN at both room and elevated temperature. Chipping was more localised on TiAlN although this coating showed the lowest critical loads at both test temperatures. EDX analysis of scratch tracks after coating failure showed tribo-oxidation of the cemented carbide substrate. AlTiN showed improved scratch resistance at higher temperature. The von Mises, tensile and shear stresses acting on the coating and substrate sides of the interface were evaluated analytically to determine the main stresses acting on the interface. At 1 N there are high stresses near the coating-substrate interface. Repetitive scratch tests at this load can be considered as a sub-critical load micro-scale wear test which is more sensitive to adhesion differences than the ramped load scratch test. The analytical modelling showed that a dramatic improvement in the performance of AlTiN in the 1 N test at 500 °C could be explained by the stress distribution in contact resulting in a change in yield location due to the high temperature mechanical properties. The increase in critical load with temperature on AlTiN and AlCrN is primarily a result of the changing stress distribution in the highly loaded sliding contact rather than an improvement in adhesion strength
Faculty Brass Quintet
Kemp Recital Hall Tuesday Evening March 7, 1995 8:00p.m
A cross-reactive antibody protects against Ross River virus musculoskeletal disease despite rapid neutralization escape in mice
Arthritogenic alphaviruses cause debilitating musculoskeletal disease and historically have circulated in distinct regions. With the global spread of chikungunya virus (CHIKV), there now is more geographic overlap, which could result in heterologous immunity affecting natural infection or vaccination. Here, we evaluated the capacity of a cross-reactive anti-CHIKV monoclonal antibody (CHK-265) to protect against disease caused by the distantly related alphavirus, Ross River virus (RRV). Although CHK-265 only moderately neutralizes RRV infection in cell culture, it limited clinical disease in mice independently of Fc effector function activity. Despite this protective phenotype, RRV escaped from CHK-265 neutralization in vivo, with resistant variants retaining pathogenic potential. Near the inoculation site, CHK-265 reduced viral burden in a type I interferon signaling-dependent manner and limited immune cell infiltration into musculoskeletal tissue. In a parallel set of experiments, purified human CHIKV immune IgG also weakly neutralized RRV, yet when transferred to mice, resulted in improved clinical outcome during RRV infection despite the emergence of resistant viruses. Overall, this study suggests that weakly cross-neutralizing antibodies can protect against heterologous alphavirus disease, even if neutralization escape occurs, through an early viral control program that tempers inflammation
Hybrid Ti-MoS2 coatings for dry machining of aluminium alloys
Combinatorial deposition, comprising filtered cathodic vacuum arc (FCVA) and physical vapor deposition (PVD) magnetron sputtering is employed to deposit molybdenum disulphide (MoS2) and titanium (Ti) thin films onto TiB2-coated tool inserts specifically designed for the dry machining of aluminium alloys. Titanium is deposited by FCVA while MoS2 is magnetron sputtered. The deposition set up allows several compositions of Ti-MoS2 to be deposited simultaneously, with Ti content ranging between 5 and 96 at. %, and their machining performances to be evaluated. Milling took place using a CNC Vertical Machining Center at a 877 mm/min feed rate. The effect of different coating compositional ratios on the degree of aluminium sticking when a milling insert is used to face mill an Al alloy (SAE 6061) was investigated using a combination of energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) analysis. XPS studies suggest that the greater degree of Al sticking on the rake face of the inserts is due to the formation of greater amounts of non-protective Ti-O phases. EDX mapping of the milling inserts after machining reveal that a Ti:MoS2 ratio of around 0.39 prevents Al from sticking to the tool edges. Since we prevent Al from sticking to the tool surface, the resultant machined surface finish is improved thus validating the machining performance of TiB2-coated tools using optimum compositions of Ti:MoS2 thin film coatings
DLC and DLC-WS2 coatings for machining of aluminium alloys
Machine-tool life is one limiting factor affecting productivity. The requirement for wear-resistant materials for cutting tools to increase their longevity is therefore critical. Titanium diboride (TiB2) coated cutting tools have been successfully employed for machining of AlSi alloys widely used in the automotive industry. This paper presents a methodological approach to improving the self-lubricating properties within the cutting zone of a tungsten carbide milling insert precoated with TiB2, thereby increasing the operational life of the tool. A unique hybrid Physical Vapor Deposition (PVD) system was used in this study, allowing diamond-like carbon (DLC) to be deposited by filtered cathodic vacuum arc (FCVA) while PVD magnetron sputtering was employed to deposit WS2. A series of ~100-nm monolayer DLC coatings were prepared at a negative bias voltage ranging between −50 and −200 V, along with multilayered DLC-WS2 coatings (total thickness ~500 nm) with varying number of layers (two to 24 in total). The wear rate of the coated milling inserts was investigated by measuring the flank wear during face milling of an Al-10Si. It was ascertained that employing monolayer DLC coating reduced the coated tool wear rate by ~85% compared to a TiB2 benchmark. Combining DLC with WS2 as a multilayered coating further improved tool life. The best tribological properties were found for a two-layer DLC-WS2 coating which decreased wear rate by ~75% compared to TiB2, with a measured coefficient of friction of 0.05
Factors affecting consistency and accuracy in identifying modern macroperforate planktonic foraminifera
Planktonic foraminifera are widely used in biostratigraphic, palaeoceanographic and evolutionary studies, but the strength of many study conclusions could be weakened if taxonomic identifications are not reproducible by different workers. In this study, to assess the relative importance of a range of possible reasons for among-worker disagreement in identification, 100 specimens of 26 species of macroperforate planktonic foraminifera were selected from a core-top site in the subtropical Pacific Ocean. Twenty-three scientists at different career stages – including some with only a few days experience of planktonic foraminifera – were asked to identify each specimen to species level, and to indicate their confidence in each identification. The participants were provided with a species list and had access to additional reference materials. We use generalised linear mixed-effects models to test the relevance of three sets of factors in identification accuracy: participant-level characteristics (including experience), species-level characteristics (including a participant’s knowledge of the species) and specimen-level characteristics (size, confidence in identification). The 19 less experienced scientists achieve a median accuracy of 57 %, which rises to 75 % for specimens they are confident in. For the 4 most experienced participants, overall accuracy is 79 %, rising to 93 % when they are confident. To obtain maximum comparability and ease of analysis, everyone used a standard microscope with only 35× magnification, and each specimen was studied in isolation. Consequently, these data provide a lower limit for an estimate of consistency. Importantly, participants could largely predict whether their identifications were correct or incorrect: their own assessments of specimen-level confidence and of their previous knowledge of species concepts were the strongest predictors of accuracy
Facilitating TiB2 for filtered vacuum cathodic arc evaporation
TiB2 is well established as a superhard coating with a high melting point and a low coefficient of friction. The brittle nature of borides means they cannot be utilised with arc evaporation, which is commonly used for the synthesis of hard coatings as it provides a high deposition rate, fully ionised plasma and good adhesion. In this work, TiB2 conical cathodes with non-standard sintering additives (carbon and TiSi2) were produced, and the properties of the base material, such as grain structure, hardness, electrical resistivity and composition, were compared to those of monolithic TiB2. The dependence of the produced cathodes’ electrical resistivity on temperature was evaluated in a furnace with an argon atmosphere. Their arc–evaporation suitability was assessed in terms of arc mobility and stability by visual inspection and by measurements of plasma electrical potential. In addition, shaping the cathode into a cone allowed investigation of the influence of an axial magnetic field on the arc spot. The produced cathodes have a bulk hardness of 23–24 GPa. It has been found that adding 1 wt% of C ensured exceptional arc-spot stability and mobility, and requires lower arc current compared to monolithic TiB2. However, poor cathode utilization has been achieved due to the steady generation of cathode flakes. The TiB2 cathode containing 5 wt% of TiSi2 provided the best balance between arc-spot behaviour and cathode utilisation. Preventing cathode overheating has been identified as a main factor to allow high deposition rate (±1.2 µm/h) from TiB2-C and TiB2-TiSi2 cathodes
Illuminating the Darkness: Exploiting Untapped Data and Information Resources in Earth Science
No abstract availabl
- …