ILLUMINATING THE DARKNESS

Exploiting Untapped Data and Information Resources in Earth Science

Dr. Rahul Ramachandran DAAC Manager, GHRC NASA/MSFC rahul.ramachandran@nasa.gov 256-961-7620

Project Team

- Univ. of Alabama in Huntsville
 - Manil Maskey*
 - o Xiang Li

• RPI

- Peter Fox*
- o Stephan Klene
- NASA/GSFC
 - Steve Kempler (Chris Lynnes*)
 - Suhung Shen
 - Chung-Lin Shie

Outline

- Overview of Project
- Use Case Deconstruction
- Initial Results from Data Curation Service

Part 1: Overview

Motivation

- Data preparation steps are cumbersome and time consuming
 - Covers discovery, access and preprocessing

• Limitations of current Data and information

- Searches on data are boolean searches on instrument or geophysical keywords
- Underlying assumptions that users have sufficient knowledge of the domain vocabulary
- Lack support for those unfamiliar with the domain
 - vocabulary or the breadth of relevant data available

Earth Science Metadata: Dark Resources

- Dark resources information resources that organizations collect, process, and store for regular business or operational activities but fail to utilize for other purposes
 - Challenge is to recognize, identify and effectively utilize these dark data stores
- Metadata catalogs contain dark resources consisting of structured information, free form descriptions of data and browse images.
 - EOS Clearing House (ECHO) holds 3666 data collections, 127 million records for individual files and 67 million browse images.

Premise: Metadata catalogs can be utilized beyond their original design intent to provide new data discovery and exploration pathways to support science and education communities.

Browse Image Example: Understanding regional air pollution from haze

- MODIS 2010 image over India which shows modest level haze pollution is used to drive the search
- How often does
 Haze occur
 over Indian
 subcontinent?

rapidfire.sci.gsfc.nasa.gov/cgi-bin/imagery/single.cgi?image=India.A2010345.0510.2km.jpg

Results: Image Retrieval and Metadata

Goals

- Design a Semantic Middleware Layer (SML) to exploit these metadata resources
 - provide novel data discovery and exploration capabilities that significantly reduce data preparation time.
 - utilize a varied set of semantic web, information retrieval and image mining technologies.
- Design SML as a Service Oriented Architecture (SOA) to allow individual components to be reused and easily integrated into existing NASA's data and information systems.

Specific Objectives

- Three specific semantic middleware core components
 - Image retrieval service uses browse imagery to enable discovery of possible new case studies and granule metadata to present analytics results.
 - Data curation service uses metadata and textual descriptions to find relevant data sets and granules needed to support the analysis of a phenomena or an event.
 - Semantic rules engine automates data preprocessing and exploratory analysis and visualization tasks.
- Demonstrate value using science use cases

Explore pathways to infuse this technology into existing NASA information and data system

Science Use Cases

- Dust storms, Volcanic Eruptions, Tropical Storms
- Volcanic Eruptions:
 - Emit a variety of gases as well as volcanic ash, which are in turn affected by atmospheric conditions such as winds.
 - Role of Components
 - Image Retrieval Service is used to find volcanic ash events in browse imagery
 - Data Curation Service provides the relevant datasets to support event analysis
 - Rules Engine invokes a Giovanni processing workflow to assemble and compare the wind, aerosol and SO2 data for the vent

Part 2: Use Case Deconstruction

Volcanic Eruptions

Conceptual Flow and Data Dictionary

Phenomena : As commonly used in weather observing practice, an observable occurrence of particular physical	 Volcanic eruption Hurricane
Event : Instance of an natural phenomena	1.2008 Chaitén Volcanic eruption, 2.Hurricane Katrina
Physical Manifestation : feature characteristic, the estimation of which is the purpose of an observation	Volcano: Ash plume Hurricane: Wind Fields Eye (Atmospheric Pressure)
Instance (time and space) of physical manifestation	 2008 Chaitén ash plume Wind speeds in and around Hurricane Katrina
Measurements (Observable Property): How an instrument observes Phenomena	 Volcanic Eruption: SO2 Column, Aerosol Optical Depth Hurricane Rainrate Wind speed/direction
Data Set Variable: Representation of the measurement in a data file, variables within an actual data file	OMSO2e:ColumnAmountSO2_PBL MOD08:Optical_Depth_Land_and_ Ocean_Mean Precipitation/Visible Frequencies, Pressure

Initial Model

Volcanic Eruption: Chaitén 2008

The Chaitén Volcano seen from a commercial flight, October 2008. It was into eruptive phase for the first time in about 9,500 years on the morning of May 2, 2008.

Eruption Time period: May 2 – Nov 2008 Location: Andes region, Chile (-42.832778, -72.645833)

Browse Images

Band 1-4-3 (true color)

Band 7-2-1

LST

Example: MODIS-Aqua 2008-05-03 18:45 UTC

http://lance-modis.eosdis.nasa.gov/cgi-bin/imagery/realtime.cgi? date=2008124

Example Relevant Data

Total SO₂ mass:

e.g. **Chaitén** is 10 (kt) =(kilotons), (1kt= 1000 metric tons) <u>ftp://measures.gsfc.nasa.gov/data/s4pa/SO2/MSVOLSO2L4.1/</u> <u>MSVOLSO2L4 v01-00-2014m1002.txt</u>

Daily SO2:

OMI/Aura Sulphur Dioxide (SO2) Total Column Daily L2 Global 0.125 deg http://disc.sci.gsfc.nasa.gov/datacollection/OMSO2G_V003.html

Calibrated Radiances:

MODIS/Aqua Calibrated Radiances 5-Min L1B Swath 1km http://dx.doi.org/10.5067/modis/myd021km.006

Aerosol Optical Thickness:

MODIS/Aqua Aerosol 5-Min L2 Swath 10km http://modis-atmos.gsfc.nasa.gov/MOD04 L2/

SeaWiFS Deep Blue Aerosol Optical Depth and Angstrom Exponent Level 2 Data 13.5km http://disc.gsfc.nasa.gov/datacollection/SWDB_L2_V004.shtml

IR Brightness Temperature:

NCEP/CPC 4-km Global (60 deg N - 60 deg S) Merged IR Brightness Temperature Dataset

Giovanni SO2 Plots

MODIS-Aqua 2008-05-03 18:45 UTC

2G.003 SO2 Column Amount (Planetary Boundary La (03May2008)

MODIS-Aqua 2008-05-05 18:30 UTC

http://gdata2.sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id=omil2g

Giovanni Infrared Data Plot

MODIS-Aqua 2008-05-03 18:45 UTC

MODIS-Aqua 2008-05-05 18:30 UTC

http://disc.sci.gsfc.nasa.gov/daac-bin/hurricane_data_analysis_tool.pl

Part C: Data Curation Algorithm for Phenomena

Initial Results

Data Curation Algorithm Approaches

Text mining

- Pros: Don't need to explicitly define the phenomena
- Cons: Dependent of the truth set; Catalog is dynamic and new data may never get classified
- Ontology Based
 - Pros: Best precision and recall
 - Cons: Labor intensive to build an explicit model

- Information Retrieval
 - Boolean (Faceted) Search
 - Pros: Simple to implement
 - Cons: Phenomena can be complex; User may not know all the right keywords
 - Relevancy Ranking Algorithm
 - Pros: List most relevant data first
 - Cons: Requires a custom algorithm

Assumptions/Observations

- Catalog metadata (ECHO) is rich and all metadata records have been tagged with appropriate vocabulary terms (GCMD)
- A phenomena can be defined using a bag of keywords using vocabulary terms
 - Information need can be captured by using a broad query
- Keywords (tags) in the metadata and the unstructured text (description) can be used
- Keyword is only used once per metadata record
 Term frequency does not matter
- Document frequency for keywords can be used
 - Some keywords may occur in many metadata records

Experiment Setup and Approach

- Randomly select 200 sample dataset metadata from ECHO
- Label 200 datasets
 - binary: relevant to phenomena/not relevant to phenomena (Hurricane)
- Compile set of keywords (GCMD) relevant to Hurricane – "bag of words" model

- Filter
 - $_{\rm O}$ Spatial filter
 - Temporal resolution
 - ''<= daily''
 - 85 datasets filtered out
- Apply algorithms on remaining 115 datasets
 - Jaccard coefficentbased ranking
 - Vector Space Model using Cosine similaritybased ranking

Algorithms

Jaccard Coefficient

 $\mathsf{J}(A,B)=|A\cap B|/|A\cup B|$

Where:

- A keywords defining a phenomena
- B keywords in a given dataset

Vector Space Model

- Determine term frequency (tf): (1 in our case)
- Determine inverse document frequency (idf): number of metadata records that contain the keyword
- Calculate Cosine similarity
 - \circ Sum (ff x idf) for each keyword

Retrieval Results

90 % precision with a 70% recall : 70% of the relevant data are retrieved with 90% precision

 \bullet \bullet \bullet

