26,736 research outputs found
Accretion of Small Satellites and Gas Inflows in a Disc Galaxy
Galaxy interactions can have an important effect in a galaxy's evolution.
Cosmological models predict a large number of small satellites around galaxies.
It is important to study the effect that these small satellites can have on the
host. The present work explores the effect of small N-body spherical satellites
with total mass ratios in the range approx 1:1000-1:100 in inducing gas flows
to the central regions of a disc galaxy with late-type morphology resembling
the Milky Way. Two model galaxies are considered: barred and non-barred models;
the latter one is motivated in order to isolate and understand better the
effects of the satellite. Several circular and non-circular orbits are
explored, considering both prograde and retrogade orientations. We show that
satellites with such small mass ratios can still produce observable distortions
in the gas and stellar components of the galaxy. In terms of gas flows, the
prograde circular orbits are more favourable for producing gas flows, where in
some cases up to $60% of the gas of the galaxy is driven to the central region.
We find, hence, that small satellites can induce significant gas flows to the
central regions of a disc galaxy, which is relevant in the context of fuelling
active galactic nuclei.Comment: Accepted for publication in MNRA
Multi-filter transit observations of WASP-39b and WASP-43b with three San Pedro M\'artir telescopes
Three optical telescopes located at the San Pedro M\'artir National
Observatory were used for the first time to obtain multi-filter defocused
photometry of the transiting extrasolar planets WASP-39b and WASP-43b. We
observed WASP-39b with the 2.12m telescope in the U filter for the first time,
and additional observations were carried out in the R and I filters using the
0.84m telescope. WASP-43b was observed in VRI with the same instrument, and in
the i filter with the robotic 1.50m telescope. We reduced the data using
different pipelines and performed aperture photometry with the help of custom
routines, in order to obtain the light curves. The fit of the light curves
(1.5--2.5mmag rms), and of the period analysis, allowed a revision of the
orbital and physical parameters, revealing for WASP-39b a period ( days) which is seconds larger than
previously reported. Moreover, we find for WASP-43b a planet/star radius
() which is larger in the i filter
with respect to previous works, and that should be confirmed with additional
observations. Finally, we confirm no evidence of constant period variations in
WASP-43b.Comment: 13 pages, 7 figures, accepted in PASP, scheduled for the February 1,
2015 issu
Streaming motions and kinematic distances to molecular clouds
FGR-F and IAB gratefully acknowledge support from the ERC Advanced Grant ECOGAL project, grant agreement 291227, funded by the European Research Council under ERC-2011-ADG.We present high-resolution smoothed particle hydrodynamics simulations of a region of gas flowing in a spiral arm and identify dense gas clouds to investigate their kinematics with respect to a Milky Way model. We find that, on average, the gas in the arms can have a net radial streaming motion of vR ≈ -9 km s-1 and rotate approximate to 6 km s-1 slower than the circular velocity. This translates to average peculiar motions towards the Galaxy centre and opposite to Galactic rotation. These results may be sensitive to the assumed spiral arm perturbation, which is ≈ 3 per cent of the disc potential in our model. We compare the actual distance and the kinematic estimate and we find that streaming motions introduce systematic offsets of ≈ 1 kpc. We find that the distance error can be as large as ± 2 kpc, and the recovered cloud positions have distributions that can extend significantly into the inter-arm regions. We conclude that this poses a difficulty in tracing spiral arm structure in molecular cloud surveys.Publisher PDFPeer reviewe
Understanding Pound-Drever-Hall locking using voltage controlled radio-frequency oscillators: An undergraduate experiment
We have developed a senior undergraduate experiment that illustrates
frequency stabilization techniques using radio-frequency electronics. The
primary objective is to frequency stabilize a voltage controlled oscillator to
a cavity resonance at 800 MHz using the Pound-Drever-Hall method. This
technique is commonly applied to stabilize lasers at optical frequencies. By
using only radio-frequency equipment it is possible to systematically study
aspects of the technique more thoroughly, inexpensively, and free from eye
hazards. Students also learn about modular radio-frequency electronics and
basic feedback control loops. By varying the temperature of the resonator,
students can determine the thermal expansion coefficients of copper, aluminum,
and super invar.Comment: 9 pages, 10 figure
Large-scale gas flows and streaming motions in simulated spiral galaxies
FGR-F and IAB gratefully acknowledge support from the ERC ECOGAL project, grant agreement 291227, funded by the European Research Council under ERC2011-ADG. FGR-F also acknowledges a St. Leonards Scholarship from the University of St Andrews and support from the Hyperstars project (funded by Région Paris Île-de-France DIMACAV+) at the final stages of this project. This equipment is funded by BIS National EInfrastructure capital grant ST/K000373/1 and STFC DiRAC Operations grant ST/K0003259/1.From a galactic perspective, star formation occurs on the smallest scales within molecular clouds, but it is likely initiated from the large scale flows driven by galactic dynamics. To understand the conditions for star formation, it is important to first discern the mechanisms that drive gas from large-scales into dense structures on the smallest scales of a galaxy. We present high-resolution smoothed particle hydrodynamics simulations of two model spiral galaxies: one with a live stellar disc (N-body) and one with a spiral potential. We investigate the large-scale flows and streaming motions driven by the simulated spiral structure. We find that the strength of the motions in the radial direction tends to be higher than in the azimuthal component. In the N-body model, the amplitude of these motions decreases with galactocentric radius whereas for the spiral potential, it decreases to a minimum at the corotation radius, and increases again after this point. The results show that in both simulations, the arms induce local shocks, an increase in kinetic energy that can drive turbulence and a means of compressing and expanding the gas. These are all crucial elements in forming molecular clouds and driving the necessary conditions for star formation.PostprintPeer reviewe
Low temperature series expansions for the square lattice Ising model with spin S > 1
We derive low-temperature series (in the variable )
for the spontaneous magnetisation, susceptibility and specific heat of the
spin- Ising model on the square lattice for , 2, , and
3. We determine the location of the physical critical point and non-physical
singularities. The number of non-physical singularities closer to the origin
than the physical critical point grows quite rapidly with . The critical
exponents at the singularities which are closest to the origin and for which we
have reasonably accurate estimates are independent of . Due to the many
non-physical singularities, the estimates for the physical critical point and
exponents are poor for higher values of , though consistent with
universality.Comment: 14 pages, LaTeX with IOP style files (ioplppt.sty), epic.sty and
eepic.sty. To appear in J. Phys.
Plasticization and antiplasticization of polymer melts diluted by low molar mass species
An analysis of glass formation for polymer melts that are diluted by
structured molecular additives is derived by using the generalized entropy
theory, which involves a combination of the Adam-Gibbs model and the direct
computation of the configurational entropy based on a lattice model of polymer
melts that includes monomer structural effects. Antiplasticization is
accompanied by a "toughening" of the glass mixture relative to the pure
polymer, and this effect is found to occur when the diluents are small species
with strongly attractive interactions with the polymer matrix. Plasticization
leads to a decreased glass transition temperature T_g and a "softening" of the
fragile host polymer in the glass state. Plasticization is prompted by small
additives with weakly attractive interactions with the polymer matrix. The
shifts in T_g of polystyrene diluted by fully flexible short oligomers are
evaluated from the computations, along with the relative changes in the
isothermal compressibility at T_g to characterize the extent to which the
additives act as antiplasticizers or plasticizers. The theory predicts that a
decreased fragility can accompany both antiplasticization and plasticization of
the glass by molecular additives. The general reduction in the T_g and
fragility of polymers by these molecular additives is rationalized by analyzing
the influence of the diluent's properties (cohesive energy, chain length, and
stiffness) on glass formation in diluted polymer melts. The description of
glass formation at fixed temperature that is induced upon change the fluid
composition directly implies the Angell equation for the structural relaxation
time as function of the polymer concentration, and the computed "zero mobility
concentration" scales linearly with the inverse polymerization index N.Comment: 12 pages, 15 figure
Are geometric morphometric analyses replicable? Evaluating landmark measurement error and its impact on extant and fossil Microtus classification.
Geometric morphometric analyses are frequently employed to quantify biological shape and shape variation. Despite the popularity of this technique, quantification of measurement error in geometric morphometric datasets and its impact on statistical results is seldom assessed in the literature. Here, we evaluate error on 2D landmark coordinate configurations of the lower first molar of five North American Microtus (vole) species. We acquired data from the same specimens several times to quantify error from four data acquisition sources: specimen presentation, imaging devices, interobserver variation, and intraobserver variation. We then evaluated the impact of those errors on linear discriminant analysis-based classifications of the five species using recent specimens of known species affinity and fossil specimens of unknown species affinity. Results indicate that data acquisition error can be substantial, sometimes explaining >30% of the total variation among datasets. Comparisons of datasets digitized by different individuals exhibit the greatest discrepancies in landmark precision, and comparison of datasets photographed from different presentation angles yields the greatest discrepancies in species classification results. All error sources impact statistical classification to some extent. For example, no two landmark dataset replicates exhibit the same predicted group memberships of recent or fossil specimens. Our findings emphasize the need to mitigate error as much as possible during geometric morphometric data collection. Though the impact of measurement error on statistical fidelity is likely analysis-specific, we recommend that all geometric morphometric studies standardize specimen imaging equipment, specimen presentations (if analyses are 2D), and landmark digitizers to reduce error and subsequent analytical misinterpretations
- …