19,844 research outputs found
On the nature of the torus in the complex Lorenz equations.
The complex Lorenz equations are a nonlinear fifth-order set of physically derived differential equations which exhibit an exact analytic limit cycle which subsequently bifurcates to a torus. In this paper we build upon previously derived results to examine a connection between this torus at high and low r1 bifurcation parameter) and between zero and nonzero r2(complexity parameter); in so doing, we are able to gain insight on the effect of the rotational invariance of the system, and on how extra weak dispersion (r2 ≠0) affects the chaotic behavior of the real Lorenz system (which describes a weakly dissipative, dispersive instability)
Relaxation oscillations in a class of delay-differential equations.
We study a class of delay differential equations which have been used to model hematological stem cell regulation and dynamics. Under certain circumstances the model exhibits self-sustained oscillations, with periods which can be significantly longer than the basic cell cycle time. We show that the long periods in the oscillations occur when the cell generation rate is small, and we provide an asymptotic analysis of the model in this case. This analysis bears a close resemblance to the analysis of relaxation oscillators (such as the Van der Pol oscillator), except that in our case the slow manifold is infinite dimensional. Despite this, a fairly complete analysis of the problem is possible
A delay recruitment model of the cardiovascular control system.
Copyright will be owned by Springer. We develop a nonlinear delay-differential equation for the human cardiovascular control system, and use it to explore blood pressure and heart rate variability under short-term baroreflex control. The model incorporates an intrinsically stable heart rate in the absence of nervous control, and features baroreflex influence on both heart rate and peripheral resistance. Analytical simplifications of the model allow a general investigation of the rĂ´les played by gain and delay, and the effects of ageing.
Challenges in nucleosynthesis of trans-iron elements
© 2014 Author(s).. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.Nucleosynthesis beyond Fe poses additional challenges not encountered when studying astrophysical processes involving light nuclei. Astrophysical sites and conditions are not well known for some of the processes involved. On the nuclear physics side, different approaches are required, both in theory and experiment. The main differences and most important considerations are presented for a selection of nucleosynthesis processes and reactions, specifically the s-, r-, γ-, and νp-processes. Among the discussed issues are uncertainties in sites and production conditions, the difference between laboratory and stellar rates, reaction mechanisms, important transitions, thermal population of excited states, and uncertainty estimates for stellar rates. The utility and limitations of indirect experimental approaches are also addressed. The presentation should not be viewed as confining the discussed problems to the specific processes. The intention is to generally introduce the concepts and possible pitfalls along with some examples. Similar problems may apply to further astrophysical processes involving nuclei from the Fe region upward and/or at high plasma temperatures. The framework and strategies presented here are intended to aid the conception of future experimental and theoretical approaches.Peer reviewe
Carrot or stick? – Would information concerning the economic value of nutrient losses, and their impact on food quality achieve greater environmental protection than regulation?
This report was presented at the UK Organic Research 2002 Conference. Organic standards have, since their origin (Soil Association 1967) required high standards of manure management, but in reality, these have not been implemented, possibly because of perceived costs of improved handling. However, a cost/benefit analysis of intermediate steps of nutrient conservation and manure handling may provide a practical solution, optimising retention of nutrients, financial and time inputs and environmental protection. Recent research on composting with conventional manures has quantified nutrient losses from heaps with different treatments (Parkinson et al, 2001). Financial and environmental costs and benefits of different management approaches are discussed
Refactoring Legacy JavaScript Code to Use Classes: The Good, The Bad and The Ugly
JavaScript systems are becoming increasingly complex and large. To tackle the
challenges involved in implementing these systems, the language is evolving to
include several constructions for programming- in-the-large. For example,
although the language is prototype-based, the latest JavaScript standard, named
ECMAScript 6 (ES6), provides native support for implementing classes. Even
though most modern web browsers support ES6, only a very few applications use
the class syntax. In this paper, we analyze the process of migrating structures
that emulate classes in legacy JavaScript code to adopt the new syntax for
classes introduced by ES6. We apply a set of migration rules on eight legacy
JavaScript systems. In our study, we document: (a) cases that are
straightforward to migrate (the good parts); (b) cases that require manual and
ad-hoc migration (the bad parts); and (c) cases that cannot be migrated due to
limitations and restrictions of ES6 (the ugly parts). Six out of eight systems
(75%) contain instances of bad and/or ugly cases. We also collect the
perceptions of JavaScript developers about migrating their code to use the new
syntax for classes.Comment: Paper accepted at 16th International Conference on Software Reuse
(ICSR), 2017; 16 page
On the Nature of Precursors in the Radio Pulsar Profiles
In the average profiles of several radio pulsars, the main pulse is
accompanied by the preceding component. This so called precursor is known for
its distinctive polarization, spectral, and fluctuation properties. Recent
single-pulse observations hint that the sporadic activity at the extreme
leading edge of the pulse may be prevalent in pulsars. We for the first time
propose a physical mechanism of this phenomenon. It is based on the induced
scattering of the main pulse radiation into the background. We show that the
scattered component is directed approximately along the ambient magnetic field
and, because of rotational aberration in the scattering region, appears in the
pulse profile as a precursor to the main pulse. Our model naturally explains
high linear polarization of the precursor emission, its spectral and
fluctuation peculiarities as well as suggests a specific connection between the
precursor and the main pulse at widely spaced frequencies. This is believed to
stimulate multifrequency single-pulse studies of intensity modulation in
different pulsars.Comment: 5 pages, no figures. Accepted for publication in MNRAS Letter
- …