14,826 research outputs found
Flooding and flow reversal in annular two-phase flows.
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available a
Challenges in nucleosynthesis of trans-iron elements
© 2014 Author(s).. All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.Nucleosynthesis beyond Fe poses additional challenges not encountered when studying astrophysical processes involving light nuclei. Astrophysical sites and conditions are not well known for some of the processes involved. On the nuclear physics side, different approaches are required, both in theory and experiment. The main differences and most important considerations are presented for a selection of nucleosynthesis processes and reactions, specifically the s-, r-, γ-, and νp-processes. Among the discussed issues are uncertainties in sites and production conditions, the difference between laboratory and stellar rates, reaction mechanisms, important transitions, thermal population of excited states, and uncertainty estimates for stellar rates. The utility and limitations of indirect experimental approaches are also addressed. The presentation should not be viewed as confining the discussed problems to the specific processes. The intention is to generally introduce the concepts and possible pitfalls along with some examples. Similar problems may apply to further astrophysical processes involving nuclei from the Fe region upward and/or at high plasma temperatures. The framework and strategies presented here are intended to aid the conception of future experimental and theoretical approaches.Peer reviewe
On the Nature of Precursors in the Radio Pulsar Profiles
In the average profiles of several radio pulsars, the main pulse is
accompanied by the preceding component. This so called precursor is known for
its distinctive polarization, spectral, and fluctuation properties. Recent
single-pulse observations hint that the sporadic activity at the extreme
leading edge of the pulse may be prevalent in pulsars. We for the first time
propose a physical mechanism of this phenomenon. It is based on the induced
scattering of the main pulse radiation into the background. We show that the
scattered component is directed approximately along the ambient magnetic field
and, because of rotational aberration in the scattering region, appears in the
pulse profile as a precursor to the main pulse. Our model naturally explains
high linear polarization of the precursor emission, its spectral and
fluctuation peculiarities as well as suggests a specific connection between the
precursor and the main pulse at widely spaced frequencies. This is believed to
stimulate multifrequency single-pulse studies of intensity modulation in
different pulsars.Comment: 5 pages, no figures. Accepted for publication in MNRAS Letter
Surface Code Threshold in the Presence of Correlated Errors
We study the fidelity of the surface code in the presence of correlated
errors induced by the coupling of physical qubits to a bosonic environment. By
mapping the time evolution of the system after one quantum error correction
cycle onto a statistical spin model, we show that the existence of an error
threshold is related to the appearance of an order-disorder phase transition in
the statistical model in the thermodynamic limit. This allows us to relate the
error threshold to bath parameters and to the spatial range of the correlated
errors.Comment: 5 pages, 2 figure
On a Tree and a Path with no Geometric Simultaneous Embedding
Two graphs and admit a geometric simultaneous
embedding if there exists a set of points P and a bijection M: P -> V that
induce planar straight-line embeddings both for and for . While it
is known that two caterpillars always admit a geometric simultaneous embedding
and that two trees not always admit one, the question about a tree and a path
is still open and is often regarded as the most prominent open problem in this
area. We answer this question in the negative by providing a counterexample.
Additionally, since the counterexample uses disjoint edge sets for the two
graphs, we also negatively answer another open question, that is, whether it is
possible to simultaneously embed two edge-disjoint trees. As a final result, we
study the same problem when some constraints on the tree are imposed. Namely,
we show that a tree of depth 2 and a path always admit a geometric simultaneous
embedding. In fact, such a strong constraint is not so far from closing the gap
with the instances not admitting any solution, as the tree used in our
counterexample has depth 4.Comment: 42 pages, 33 figure
Physics of Interpulse Emission in Radio Pulsars
The magnetized induced Compton scattering off the particles of the
ultrarelativistic electron-positron plasma of pulsar is considered. The main
attention is paid to the transverse regime of the scattering, which holds in a
moderately strong magnetic field. We specifically examine the problem on
induced transverse scattering of the radio beam into the background, which
takes place in the open field line tube of a pulsar. In this case, the
radiation is predominantly scattered backwards and the scattered component may
grow considerably. Based on this effect, we for the first time suggest a
physical explanation of the interpulse emission observed in the profiles of
some pulsars. Our model can naturally account for the peculiar spectral and
polarization properties of the interpulses. Furthermore, it implies a specific
connection of the interpulse to the main pulse, which may reveal itself in the
consistent intensity fluctuations of the components at different timescales.
Diverse observational manifestations of this connection, including the moding
behavior of PSR B1822-09, the peculiar temporal and frequency structure of the
giant interpulses in the Crab pulsar, and the intrinsic phase correspondence of
the subpulse patterns in the main pulse and the interpulse of PSR B1702-19, are
discussed in detail. It is also argued that the pulse-to-pulse fluctuations of
the scattering efficiency may lead to strong variability of the interpulse,
which is yet to be studied observationally. In particular, some pulsars may
exhibit transient interpulses, i.e. the scattered component may be detectable
only occasionally.Comment: 28 pages, 2 figures. Accepted for publication in Ap
Architectural/Environmental Handbook for Extraterrestrial Design
Handbook on environmental and space utilization criteria for design of extraterrestrial manned spacecraft and shelter
- …