256 research outputs found

    Some old movies become classics - a case study determining the scientific value of ROV inspection footage on a platform on Australia's North West Shelf

    Get PDF
    © 2018 Thomson, Fowler, Davis, Pattiaratchi and Booth. The global oil and gas industry holds a vast archive of Remotely Operated Vehicle (ROV) inspection footage potentially containing useful long-term data on marine biological communities. With the upcoming era of decommissioning of oil and gas structures, it is timely to assess the usefulness of this footage for researching these communities. We used ROV inspection footage to characterize the sessile invertebrates and fishes associated with the Goodwyn Alpha Production Platform (GWA) on the North West Shelf of Australia between depths of 10 and 125 m during 2006 and 2008. Depth was a major driver of invertebrate assemblages, most likely due to specific requirements such as light, and differences between years were most likely from the physical detachment of species by cyclones and internal waves. Phototrophic species were mostly limited to the upper 50 m of the platform, including the hard coral Pocillopora sp. and the soft corals Nephthea sp. and Scleronephthya sp. In contrast, heterotrophic species including sponges, anemones, bryozoans, hydroids, bivalves such as Lopha folium and the hard coral Tubastrea spp., were distributed across all depths. We observed 1791 fish from at least 10 families and 19 species, including commercial species such as crimson seaperch (Lutjanus erythropterus), red emperor (L. sebae), saddle-tailed seaperch (L. malabaricus), mangrove jack (L. argentimaculatus) and trevally (Caranx spp.). Fish density increased significantly with depth during 2008, from a mean of 23 fish/50 m2 between 10 and 25 m to 3373 fish/50 m2 at 125 m, where small unidentified baitfish were abundant. The highest densities of commercial species occurred between 25 and 75 m depth, suggesting that mid-depth platform sections had high habitat value, a consideration when selecting decommissioning options. The greatest difficulties using the video were the poor lighting and resolution that inhibited our ability to identify sessile species with high taxonomic precision. However, the footage was useful for evaluating high-level biodiversity of the platform, understanding how fish and invertebrate communities changed with depth and comprehending the dynamic nature of the invertebrate community over time. Understanding the habitat value of structures will be necessary for making environmentally sound decommissioning decisions in the future

    High threshold universal quantum computation on the surface code

    Full text link
    We present a comprehensive and self-contained simplified review of the quantum computing scheme of Phys. Rev. Lett. 98, 190504 (2007), which features a 2-D nearest neighbor coupled lattice of qubits, a threshold error rate approaching 1%, natural asymmetric and adjustable strength error correction and low overhead arbitrarily long-range logical gates. These features make it by far the best and most practical quantum computing scheme devised to date. We restrict the discussion to direct manipulation of the surface code using the stabilizer formalism, both of which we also briefly review, to make the scheme accessible to a broad audience.Comment: 18 pages, 28 figures, state distillation section correcte

    Some Old Movies Become Classics – A Case Study Determining the Scientific Value of ROV Inspection Footage on a Platform on Australia’s North West Shelf

    Get PDF
    The global oil and gas industry holds a vast archive of Remotely Operated Vehicle (ROV) inspection footage potentially containing useful long-term data on marine biological communities. With the upcoming era of decommissioning of oil and gas structures, it is timely to assess the usefulness of this footage for researching these communities. We used ROV inspection footage to characterize the sessile invertebrates and fishes associated with the Goodwyn Alpha Production Platform (GWA) on the North West Shelf of Australia between depths of 10 and 125 m during 2006 and 2008. Depth was a major driver of invertebrate assemblages, most likely due to specific requirements such as light, and differences between years were most likely from the physical detachment of species by cyclones and internal waves. Phototrophic species were mostly limited to the upper 50 m of the platform, including the hard coral Pocillopora sp. and the soft corals Nephthea sp. and Scleronephthya sp. In contrast, heterotrophic species including sponges, anemones, bryozoans, hydroids, bivalves such as Lopha folium and the hard coral Tubastrea spp., were distributed across all depths. We observed 1791 fish from at least 10 families and 19 species, including commercial species such as crimson seaperch (Lutjanus erythropterus), red emperor (L. sebae), saddle-tailed seaperch (L. malabaricus), mangrove jack (L. argentimaculatus) and trevally (Caranx spp.). Fish density increased significantly with depth during 2008, from a mean of 23 fish/50 m2 between 10 and 25 m to 3373 fish/50 m2 at 125 m, where small unidentified baitfish were abundant. The highest densities of commercial species occurred between 25 and 75 m depth, suggesting that mid-depth platform sections had high habitat value, a consideration when selecting decommissioning options. The greatest difficulties using the video were the poor lighting and resolution that inhibited our ability to identify sessile species with high taxonomic precision. However, the footage was useful for evaluating high-level biodiversity of the platform, understanding how fish and invertebrate communities changed with depth and comprehending the dynamic nature of the invertebrate community over time. Understanding the habitat value of structures will be necessary for making environmentally sound decommissioning decisions in the future

    The effects of water temperature on the juvenile performance of two tropical damselfishes expatriating to temperate reefs

    Get PDF
    Ocean warming associated with global climate change is already inducing geographic range shifts of marine species. Juvenile coral reef fishes transported into temperate latitudes (termed 'vagrant' fishes) can experience winter water temperatures below their normal thermal minimum. Such environmental extremes may increase energetic costs for such fishes, resulting in reduced performance, which may be the governing factor that limits the potential for poleward range expansion of such fishes. This study compared the juvenile physiological performance and behaviour of two congeneric tropical damselfishes which settle during austral summer months within temperate eastern Australia: Abudefduf vaigiensis have an extended southern range, and lower threshold survival temperature than the congeneric A. whitleyi. Physiological and behavioural performance parameters that may be affected by cooler temperature regimes at higher latitudes were measured in aquaria. Lower water temperature resulted in reduced growth rates, feeding rates, burst escape speed and metabolic rates of both species, with significantly reduced performance (up to six-fold reductions) for fishes reared at 18°C relative to 22°C and 26°C. However, A. whitleyi exhibited lower growth rates than A. vaigiensis across all temperatures, and lower aerobic capacity at the lowest temperature (18°C). This difference between species in growth and metabolic capacity suggests that the extended southern distribution and greater overwintering success of A. vaigiensis, in comparison to A. whitleyi is related to thermal performance parameters which are critical in maintaining individual health and survival. Our results support previous findings in the region that water temperature below 22°C represents a critical physiological threshold for tropical Abudefduf species expatriating into temperate south-eastern Australia

    Accuracy threshold for concatenated error detection in one dimension

    Full text link
    Estimates of the quantum accuracy threshold often tacitly assume that it is possible to interact arbitrary pairs of qubits in a quantum computer with a failure rate that is independent of the distance between them. None of the many physical systems that are candidates for quantum computing possess this property. Here we study the performance of a concatenated error-detection code in a system that permits only nearest-neighbor interactions in one dimension. We make use of a new message-passing scheme that maximizes the number of errors that can be reliably corrected by the code. Our numerical results indicate that arbitrarily accurate universal quantum computation is possible if the probability of failure of each elementary physical operation is below approximately 10^{-5}. This threshold is three orders of magnitude lower than the highest known.Comment: 7 pages, 4 figures, now with error bar

    Long-range coupling and scalable architecture for superconducting flux qubits

    Full text link
    Constructing a fault-tolerant quantum computer is a daunting task. Given any design, it is possible to determine the maximum error rate of each type of component that can be tolerated while still permitting arbitrarily large-scale quantum computation. It is an underappreciated fact that including an appropriately designed mechanism enabling long-range qubit coupling or transport substantially increases the maximum tolerable error rates of all components. With this thought in mind, we take the superconducting flux qubit coupling mechanism described in PRB 70, 140501 (2004) and extend it to allow approximately 500 MHz coupling of square flux qubits, 50 um a side, at a distance of up to several mm. This mechanism is then used as the basis of two scalable architectures for flux qubits taking into account crosstalk and fault-tolerant considerations such as permitting a universal set of logical gates, parallelism, measurement and initialization, and data mobility.Comment: 8 pages, 11 figure

    Unlocking the Keyhole - H2 and PAH emission from molecular clumps in the Keyhole Nebula

    Get PDF
    To better understand the environment surrounding CO emission clumps in the Keyhole Nebula, we have made images of the region in H2 1-0 S(1) (2.122 um) emission and polycyclic aromatic hydrocarbon (PAH) emission at 3.29 um. Our results show that the H2 and PAH emission regions are morphologically similar, existing as several clumps, all of which correspond to CO emission clumps and dark optical features. The emission confirms the existence of photodissociation regions (PDRs) on the surface of the clumps. By comparing the velocity range of the CO emission with the optical appearance of the H2 and PAH emission, we present a model of the Keyhole Nebula in which the most negative velocity clumps are in front of the ionization region, the clumps at intermediate velocities are in it, and those which have the least negative velocities are at the far side. It may be that these clumps, which appear to have been swept up from molecular gas by the stellar winds from eta Car, are now being over-run by the ionization region and forming PDRs on their surfaces. These clumps comprise the last remnants of the ambient molecular cloud around eta Car.Comment: 8 pages, 4 figures, to be published in MNRA

    Integration of highly probabilistic sources into optical quantum architectures: perpetual quantum computation

    Full text link
    In this paper we introduce a design for an optical topological cluster state computer constructed exclusively from a single quantum component. Unlike previous efforts we eliminate the need for on demand, high fidelity photon sources and detectors and replace them with the same device utilised to create photon/photon entanglement. This introduces highly probabilistic elements into the optical architecture while maintaining complete specificity of the structure and operation for a large scale computer. Photons in this system are continually recycled back into the preparation network, allowing for a arbitrarily deep 3D cluster to be prepared using a comparatively small number of photonic qubits and consequently the elimination of high frequency, deterministic photon sources.Comment: 19 pages, 13 Figs (2 Appendices with additional Figs.). Comments welcom
    corecore