38 research outputs found

    Inducible deletion of CD28 prior to secondary nippostrongylus brasiliensis infection impairs worm expulsion and recall of protective memory CD4 (+) T cell responses

    Get PDF
    IL-13 driven Th2 immunity is indispensable for host protection against infection with the gastrointestinal nematode Nippostronglus brasiliensis. Disruption of CD28 mediated costimulation impairs development of adequate Th2 immunity, showing an importance for CD28 during the initiation of an immune response against this pathogen. In this study, we used global CD28−/− mice and a recently established mouse model that allows for inducible deletion of the cd28 gene by oral administration of tamoxifen (CD28−/loxCre+/−+TM) to resolve the controversy surrounding the requirement of CD28 costimulation for recall of protective memory responses against pathogenic infections. Following primary infection with N. brasiliensis, CD28−/− mice had delayed expulsion of adult worms in the small intestine compared to wild-type C57BL/6 mice that cleared the infection by day 9 post-infection. Delayed expulsion was associated with reduced production of IL-13 and reduced serum levels of antigen specific IgG1 and total IgE. Interestingly, abrogation of CD28 costimulation in CD28−/loxCre+/− mice by oral administration of tamoxifen prior to secondary infection with N. brasiliensis resulted in impaired worm expulsion, similarly to infected CD28−/− mice. This was associated with reduced production of the Th2 cytokines IL-13 and IL-4, diminished serum titres of antigen specific IgG1 and total IgE and a reduced CXCR5+ TFH cell population. Furthermore, total number of CD4+ T cells and B220+ B cells secreting Th1 and Th2 cytokines were significantly reduced in CD28−/− mice and tamoxifen treated CD28−/loxCre+/− mice compared to C57BL/6 mice. Importantly, interfering with CD28 costimulatory signalling before re-infection impaired the recruitment and/or expansion of central and effector memory CD4+ T cells and follicular B cells to the draining lymph node of tamoxifen treated CD28−/loxCre+/− mice. Therefore, it can be concluded that CD28 costimulation is essential for conferring host protection during secondary N. brasiliensis infection

    Interferon gamma derived from CD4(+) T cells is sufficient to mediate T helper cell type 1 development.

    Get PDF
    Interferon gamma (IFN-gamma) has been implicated in T helper type 1 (Th1) cell development through its ability to optimize interleukin 12 (IL-12) production from macrophages and IL-12 receptor expression on activated T cells. Various systems have suggested a role for IFN-gamma derived from the innate immune system, particularly natural killer (NK) cells, in mediating Th1 differentiation in vivo. We tested this requirement by reconstituting T cell and IFN-gamma doubly deficient mice with wild-type CD4(+) T cells and challenging the mice with pathogens that elicited either minimal or robust IL-12 in vivo (Leishmania major or Listeria monocytogenes, respectively). Th1 cells developed under both conditions, and this was unaffected by the presence or absence of IFN-gamma in non-T cells. Reconstitution with IFN-gamma-deficient CD4(+) T cells could not reestablish control over L. major, even in the presence of IFN-gamma from the NK compartment. These data demonstrate that activated T cells can maintain responsiveness to IL-12 through elaboration of endogenous IFN-gamma without requirement for an exogenous source of this cytokine

    A Leishmania infantum cytosolic tryparedoxin activates B cells to secrete interleukin-10 and specific immunoglobulin

    No full text
    The immune evasion mechanisms of pathogenic trypanosomatids involve a multitude of phenomena such as the polyclonal activation of lymphocytes, cytokine modulation and the enhanced detoxification of oxygen reactive species. A trypanothione cascade seems to be involved in the detoxification process. It was recently described and characterized a tryparedoxin (LiTXN1) involved in Leishmania infantum cytoplasmatic hydroperoxide metabolism. LiTXN1 is a secreted protein that is up-regulated in the infectious form of the parasite, suggesting that it may play an important role during infection. In the present study, we investigated whether recombinant LiTXN1 (rLiTXN1) affects T- and B-cell functions in a murine model. We observed a significant increase in the CD69 surface marker on the B-cell population in total spleen cells and on isolated B cells from BALB/c mice after in vitro rLiTXN1 stimulus. Activated B-cells underwent further proliferation, as indicated by increased [3H]thymidine incorporation. Cytokine quantification showed a dose-dependent up-regulation of interleukin (IL)-10 secretion. B cells were identified as a source of this secretion. Furthermore, intraperitoneal injection of rLiTXN1 into BALB/c mice triggered the production of elevated levels of rLiTXN1-specific antibodies, predominantly of the immunoglobulin M (IgM), IgG1 and IgG3 isotypes, with a minimum reactivity against other heterologous antigens. Taken together, our data suggest that rLiTXN1 may participate in immunopathological processes by targeting B-cell effector functions, leading to IL-10 secretion and production of specific antibodies

    Cytokines, IgG subclasses and costimulation in a mouse model of thyroid autoimmunity induced by injection of fibroblasts co-expressing MHC class II and thyroid autoantigens

    No full text
    AKR/N mice injected with fibroblasts expressing MHC class II (RT4.15HP cells) and the TSH receptor (TSHR) develop antibodies similar to those in Graves' disease. We were unable to analyse the subclass of these antibodies because of unexpectedly high non-specific binding by ELISA or flow cytometry. The non-specific binding reflected generalized immune activation which occurred even when the fibroblasts did not express the TSHR. However, the IgG subclasses were determined for thyroid peroxidase (TPO) antibodies induced using TPO-expressing RT4.14HP cells and found to be IgG2a > IgG1. This Th1 pattern is consistent with spontaneous secretion of interferon-gamma (but not IL-4 or IL-10) by splenocytes from injected mice. The Th1 bias was related to fibroblast injection because conventional immunization of the same mouse strain with purified TPO and adjuvant induced a Th2 response (IgG1 >> IgG2a). Further, untransfected fibroblasts themselves induced powerful, non-specific proliferative responses when used as antigen-presenting cells (APC) in vitro. Flow cytometry revealed that the RT4.15HP fibroblasts (and TSHR- and TPO-transfected derivatives) expressed B7-1. Unexpected constitutive expression of this key molecule may bypass the requirement for up-regulation of other costimulatory molecules involved in T cell stimulation. Our data support the concept that RT4.15HP fibroblasts present the TSHR (or TPO), at least for initiating the immune response. However, the accompanying generalized immune stimulation creates difficulties for analysis of TSHR-specific T and B lymphocytes. On the other hand, extension of the model to TPO, an easier antigen to study, will facilitate analysis of murine T cell responses likely to resemble those in human thyroid autoimmunity
    corecore