7 research outputs found

    Vibration-Controlled Transient Elastography Scores to Predict Liver-Related Events in Steatotic Liver Disease

    Get PDF
    Importance Metabolic dysfunction–associated steatotic liver disease (MASLD) is currently the most common chronic liver disease worldwide. It is important to develop noninvasive tests to assess the disease severity and prognosis.Objective To study the prognostic implications of baseline levels and dynamic changes of the vibration-controlled transient elastography (VCTE)–based scores developed for the diagnosis of advanced fibrosis (Agile 3+) and cirrhosis (Agile 4) in patients with MASLD.Design, Setting, and Participants This cohort study included data from a natural history cohort of patients with MASLD who underwent VCTE examination at 16 tertiary referral centers in the US, Europe, and Asia from February 2004 to January 2023, of which the data were collected prospectively at 14 centers. Eligible patients were adults aged at least 18 years with hepatic steatosis diagnosed by histologic methods (steatosis in ≥5% of hepatocytes) or imaging studies (ultrasonography, computed tomography or magnetic resonance imaging, or controlled attenuation parameter ≥248 dB/m by VCTE).Main Outcomes and Measures The primary outcome was liver-related events (LREs), defined as hepatocellular carcinoma or hepatic decompensation (ascites, variceal hemorrhage, hepatic encephalopathy, or hepatorenal syndrome), liver transplant, and liver-related deaths. The Agile scores were compared with histologic and 8 other noninvasive tests.Results A total of 16 603 patients underwent VCTE examination at baseline (mean [SD] age, 52.5 [13.7] years; 9600 [57.8%] were male). At a median follow-up of 51.7 (IQR, 25.2-85.2) months, 316 patients (1.9%) developed LREs. Both Agile 3+ and Agile 4 scores classified fewer patients between the low and high cutoffs than most fibrosis scores and achieved the highest discriminatory power in predicting LREs (integrated area under the time-dependent receiver-operating characteristic curve, 0.89). A total of 10 920 patients (65.8%) had repeated VCTE examination at a median interval of 15 (IQR, 11.3-27.7) months and were included in the serial analysis. A total of 81.9% of patients (7208 of 8810) had stable Agile 3+ scores and 92.6% of patients (8163 of 8810) had stable Agile 4 scores (same risk categories at both assessments). The incidence of LREs was 0.6 per 1000 person-years in patients with persistently low Agile 3+ scores and 30.1 per 1000 person-years in patients with persistently high Agile 3+ scores. In patients with high Agile 3+ score at baseline, a decrease in the score by more than 20% was associated with substantial reduction in the risk of LREs. A similar trend was observed for the Agile 4 score, although it missed more LREs in the low-risk group.Conclusions and Relevance Findings of this study suggest that single or serial Agile scores are highly accurate in predicting LREs in patients with MASLD, making them suitable alternatives to liver biopsy in routine clinical practice and in phase 2b and 3 clinical trials for steatohepatitis

    Performance of non-invasive tests and histology for the prediction of clinical outcomes in patients with non-alcoholic fatty liver disease: an individual participant data meta-analysis

    Get PDF
    BACKGROUND: Histologically assessed liver fibrosis stage has prognostic significance in patients with non-alcoholic fatty liver disease (NAFLD) and is accepted as a surrogate endpoint in clinical trials for non-cirrhotic NAFLD. Our aim was to compare the prognostic performance of non-invasive tests with liver histology in patients with NAFLD. METHODS: This was an individual participant data meta-analysis of the prognostic performance of histologically assessed fibrosis stage (F0-4), liver stiffness measured by vibration-controlled transient elastography (LSM-VCTE), fibrosis-4 index (FIB-4), and NAFLD fibrosis score (NFS) in patients with NAFLD. The literature was searched for a previously published systematic review on the diagnostic accuracy of imaging and simple non-invasive tests and updated to Jan 12, 2022 for this study. Studies were identified through PubMed/MEDLINE, EMBASE, and CENTRAL, and authors were contacted for individual participant data, including outcome data, with a minimum of 12 months of follow-up. The primary outcome was a composite endpoint of all-cause mortality, hepatocellular carcinoma, liver transplantation, or cirrhosis complications (ie, ascites, variceal bleeding, hepatic encephalopathy, or progression to a MELD score ≥15). We calculated aggregated survival curves for trichotomised groups and compared them using stratified log-rank tests (histology: F0-2 vs F3 vs F4; LSM: 2·67; NFS: 0·676), calculated areas under the time-dependent receiver operating characteristic curves (tAUC), and performed Cox proportional-hazards regression to adjust for confounding. This study was registered with PROSPERO, CRD42022312226. FINDINGS: Of 65 eligible studies, we included data on 2518 patients with biopsy-proven NAFLD from 25 studies (1126 [44·7%] were female, median age was 54 years [IQR 44-63), and 1161 [46·1%] had type 2 diabetes). After a median follow-up of 57 months [IQR 33-91], the composite endpoint was observed in 145 (5·8%) patients. Stratified log-rank tests showed significant differences between the trichotomised patient groups (p<0·0001 for all comparisons). The tAUC at 5 years were 0·72 (95% CI 0·62-0·81) for histology, 0·76 (0·70-0·83) for LSM-VCTE, 0·74 (0·64-0·82) for FIB-4, and 0·70 (0·63-0·80) for NFS. All index tests were significant predictors of the primary outcome after adjustment for confounders in the Cox regression. INTERPRETATION: Simple non-invasive tests performed as well as histologically assessed fibrosis in predicting clinical outcomes in patients with NAFLD and could be considered as alternatives to liver biopsy in some cases. FUNDING: Innovative Medicines Initiative 2

    Performance of non-invasive tests and histology for the prediction of clinical outcomes in patients with non-alcoholic fatty liver disease: an individual participant data meta-analysis.

    Get PDF
    BACKGROUND Histologically assessed liver fibrosis stage has prognostic significance in patients with non-alcoholic fatty liver disease (NAFLD) and is accepted as a surrogate endpoint in clinical trials for non-cirrhotic NAFLD. Our aim was to compare the prognostic performance of non-invasive tests with liver histology in patients with NAFLD. METHODS This was an individual participant data meta-analysis of the prognostic performance of histologically assessed fibrosis stage (F0-4), liver stiffness measured by vibration-controlled transient elastography (LSM-VCTE), fibrosis-4 index (FIB-4), and NAFLD fibrosis score (NFS) in patients with NAFLD. The literature was searched for a previously published systematic review on the diagnostic accuracy of imaging and simple non-invasive tests and updated to Jan 12, 2022 for this study. Studies were identified through PubMed/MEDLINE, EMBASE, and CENTRAL, and authors were contacted for individual participant data, including outcome data, with a minimum of 12 months of follow-up. The primary outcome was a composite endpoint of all-cause mortality, hepatocellular carcinoma, liver transplantation, or cirrhosis complications (ie, ascites, variceal bleeding, hepatic encephalopathy, or progression to a MELD score ≥15). We calculated aggregated survival curves for trichotomised groups and compared them using stratified log-rank tests (histology: F0-2 vs F3 vs F4; LSM: 2·67; NFS: 0·676), calculated areas under the time-dependent receiver operating characteristic curves (tAUC), and performed Cox proportional-hazards regression to adjust for confounding. This study was registered with PROSPERO, CRD42022312226. FINDINGS Of 65 eligible studies, we included data on 2518 patients with biopsy-proven NAFLD from 25 studies (1126 [44·7%] were female, median age was 54 years [IQR 44-63), and 1161 [46·1%] had type 2 diabetes). After a median follow-up of 57 months [IQR 33-91], the composite endpoint was observed in 145 (5·8%) patients. Stratified log-rank tests showed significant differences between the trichotomised patient groups (p<0·0001 for all comparisons). The tAUC at 5 years were 0·72 (95% CI 0·62-0·81) for histology, 0·76 (0·70-0·83) for LSM-VCTE, 0·74 (0·64-0·82) for FIB-4, and 0·70 (0·63-0·80) for NFS. All index tests were significant predictors of the primary outcome after adjustment for confounders in the Cox regression. INTERPRETATION Simple non-invasive tests performed as well as histologically assessed fibrosis in predicting clinical outcomes in patients with NAFLD and could be considered as alternatives to liver biopsy in some cases. FUNDING Innovative Medicines Initiative 2

    Performance of non-invasive tests and histology for the prediction of clinical outcomes in patients with non-alcoholic fatty liver disease: an individual participant data meta-analysis

    Get PDF
    BackgroundHistologically assessed liver fibrosis stage has prognostic significance in patients with non-alcoholic fatty liver disease (NAFLD) and is accepted as a surrogate endpoint in clinical trials for non-cirrhotic NAFLD. Our aim was to compare the prognostic performance of non-invasive tests with liver histology in patients with NAFLD.MethodsThis was an individual participant data meta-analysis of the prognostic performance of histologically assessed fibrosis stage (F0–4), liver stiffness measured by vibration-controlled transient elastography (LSM-VCTE), fibrosis-4 index (FIB-4), and NAFLD fibrosis score (NFS) in patients with NAFLD. The literature was searched for a previously published systematic review on the diagnostic accuracy of imaging and simple non-invasive tests and updated to Jan 12, 2022 for this study. Studies were identified through PubMed/MEDLINE, EMBASE, and CENTRAL, and authors were contacted for individual participant data, including outcome data, with a minimum of 12 months of follow-up. The primary outcome was a composite endpoint of all-cause mortality, hepatocellular carcinoma, liver transplantation, or cirrhosis complications (ie, ascites, variceal bleeding, hepatic encephalopathy, or progression to a MELD score ≥15). We calculated aggregated survival curves for trichotomised groups and compared them using stratified log-rank tests (histology: F0–2 vs F3 vs F4; LSM: 2·67; NFS: 0·676), calculated areas under the time-dependent receiver operating characteristic curves (tAUC), and performed Cox proportional-hazards regression to adjust for confounding. This study was registered with PROSPERO, CRD42022312226.FindingsOf 65 eligible studies, we included data on 2518 patients with biopsy-proven NAFLD from 25 studies (1126 [44·7%] were female, median age was 54 years [IQR 44–63), and 1161 [46·1%] had type 2 diabetes). After a median follow-up of 57 months [IQR 33–91], the composite endpoint was observed in 145 (5·8%) patients. Stratified log-rank tests showed significant differences between the trichotomised patient groups (p<0·0001 for all comparisons). The tAUC at 5 years were 0·72 (95% CI 0·62–0·81) for histology, 0·76 (0·70–0·83) for LSM-VCTE, 0·74 (0·64–0·82) for FIB-4, and 0·70 (0·63–0·80) for NFS. All index tests were significant predictors of the primary outcome after adjustment for confounders in the Cox regression.InterpretationSimple non-invasive tests performed as well as histologically assessed fibrosis in predicting clinical outcomes in patients with NAFLD and could be considered as alternatives to liver biopsy in some cases

    Practical diagnosis of cirrhosis in non-alcoholic fatty liver disease using currently available non-invasive fibrosis tests

    Get PDF
    Abstract Unlike for advanced liver fibrosis, the practical rules for the early non-invasive diagnosis of cirrhosis in NAFLD remain not well defined. Here, we report the derivation and validation of a stepwise diagnostic algorithm in 1568 patients with NAFLD and liver biopsy coming from four independent cohorts. The study algorithm, using first the elastography-based tests Agile3+ and Agile4 and then the specialized blood tests FibroMeterV3G and CirrhoMeterV3G, provides stratification in four groups, the last of which is enriched in cirrhosis (71% prevalence in the validation set). A risk prediction chart is also derived to allow estimation of the individual probability of cirrhosis. The predicted risk shows excellent calibration in the validation set, and mean difference with perfect prediction is only −2.9%. These tools improve the personalized non-invasive diagnosis of cirrhosis in NAFLD

    Enhanced diagnosis of advanced fibrosis and cirrhosis in individuals with NAFLD using FibroScan-based Agile scores

    Get PDF
    Background & Aims: Currently available non-invasive tests, including fibrosis-4 index (FIB-4) and liver stiffness measurement (LSM by VCTE), are highly effective at excluding advanced fibrosis (AF) (F ≥3) or cirrhosis in people with non-alcoholic fatty liver disease (NAFLD), but only have moderate ability to rule-in these conditions. Our objective was to develop and validate two new scores (Agile 4 and Agile 3+) to identify cirrhosis or AF, respectively, with optimized positive predictive value and fewer indeterminate results, in individuals with NAFLD attending liver clinics. Methods: This international study included seven adult cohorts with suspected NAFLD who underwent liver biopsy, LSM and blood sampling during routine clinical practice or screening for trials. The population was randomly divided into a training set and an internal validation set, on which the best-fitting logistic regression model was built, and performance and goodness of fit were assessed, respectively. Furthermore, both scores were externally validated on two large cohorts. Cut-offs for high sensitivity and specificity were derived in the training set to rule-out and rule-in cirrhosis or AF and then tested in the validation set and compared to FIB-4 and LSM. Results: Each score combined LSM, AST/ALT ratio, platelets, sex and diabetes status, as well as age for Agile 3+. Calibration plots for Agile 4 and Agile 3+ indicated satisfactory to excellent goodness of fit. Agile 4 and Agile 3+ outperformed FIB-4 and LSM in terms of AUROC, percentage of patients with indeterminate results and positive predictive value to rule-in cirrhosis or AF. Conclusions: The two novel non-invasive scores improve identification of cirrhosis or AF among individuals with NAFLD attending liver clinics and reduce the need for liver biopsy in this population. Impact and implications: Non-invasive tests currently used to identify patients with advanced fibrosis or cirrhosis, such as fibrosis-4 index and liver stiffness measurement by vibration-controlled transient elastography, have high negative predictive values but high false positive rates, while results are indeterminate for a large number of cases. This study provides scores that will help the clinician diagnose advanced fibrosis or cirrhosis. These new easy-to-implement scores will help liver specialists to better identify (1) patients who need more intensive follow-up, (2) patients who should be referred for inclusion in therapeutic trials, and (3) which patients should be treated with pharmacological agents when effective therapies are approve

    Machine learning algorithm improves the detection of NASH (NAS-based) and at-risk NASH: A development and validation study

    No full text
    Background and aims: Detecting NASH remains challenging, while at-risk NASH (steatohepatitis and F≥ 2) tends to progress and is of interest for drug development and clinical application. We developed prediction models by supervised machine learning techniques, with clinical data and biomarkers to stage and grade patients with NAFLD. Approach and results: Learning data were collected in the Liver Investigation: Testing Marker Utility in Steatohepatitis metacohort (966 biopsy-proven NAFLD adults), staged and graded according to NASH CRN. Conditions of interest were the clinical trial definition of NASH (NAS ≥ 4;53%), at-risk NASH (NASH with F ≥ 2;35%), significant (F ≥ 2;47%), and advanced fibrosis (F ≥ 3;28%). Thirty-five predictors were included. Missing data were handled by multiple imputations. Data were randomly split into training/validation (75/25) sets. A gradient boosting machine was applied to develop 2 models for each condition: clinical versus extended (clinical and biomarkers). Two variants of the NASH and at-risk NASH models were constructed: direct and composite models.Clinical gradient boosting machine models for steatosis/inflammation/ballooning had AUCs of 0.94/0.79/0.72. There were no improvements when biomarkers were included. The direct NASH model produced AUCs (clinical/extended) of 0.61/0.65. The composite NASH model performed significantly better (0.71) for both variants. The composite at-risk NASH model had an AUC of 0.83 (clinical and extended), an improvement over the direct model. Significant fibrosis models had AUCs (clinical/extended) of 0.76/0.78. The extended advanced fibrosis model (0.86) performed significantly better than the clinical version (0.82). Conclusions: Detection of NASH and at-risk NASH can be improved by constructing independent machine learning models for each component, using only clinical predictors. Adding biomarkers only improved the accuracy of fibrosis
    corecore