8,017 research outputs found

    Complex patterns on the plane: different types of basin fractalization in a two-dimensional mapping

    Full text link
    Basins generated by a noninvertible mapping formed by two symmetrically coupled logistic maps are studied when the only parameter \lambda of the system is modified. Complex patterns on the plane are visualised as a consequence of basins' bifurcations. According to the already established nomenclature in the literature, we present the relevant phenomenology organised in different scenarios: fractal islands disaggregation, finite disaggregation, infinitely disconnected basin, infinitely many converging sequences of lakes, countable self-similar disaggregation and sharp fractal boundary. By use of critical curves, we determine the influence of zones with different number of first rank preimages in the mechanisms of basin fractalization.Comment: 19 pages, 11 figure

    Field-dependent diamagnetic transition in magnetic superconductor Sm1.85Ce0.15CuO4ySm_{1.85} Ce_{0.15} Cu O_{4-y}

    Full text link
    The magnetic penetration depth of single crystal Sm1.85Ce0.15CuO4y\rm{Sm_{1.85}Ce_{0.15}CuO_{4-y}} was measured down to 0.4 K in dc fields up to 7 kOe. For insulating Sm2CuO4\rm{Sm_2CuO_4}, Sm3+^{3+} spins order at the N\'{e}el temperature, TN=6T_N = 6 K, independent of the applied field. Superconducting Sm1.85Ce0.15CuO4y\rm{Sm_{1.85}Ce_{0.15}CuO_{4-y}} (Tc23T_c \approx 23 K) shows a sharp increase in diamagnetic screening below T(H)T^{\ast}(H) which varied from 4.0 K (H=0H = 0) to 0.5 K (H=H = 7 kOe) for a field along the c-axis. If the field was aligned parallel to the conducting planes, TT^{\ast} remained unchanged. The unusual field dependence of TT^{\ast} indicates a spin freezing transition that dramatically increases the superfluid density.Comment: 4 pages, RevTex

    Models of Passive and Reactive Tracer Motion: an Application of Ito Calculus

    Full text link
    By means of Ito calculus it is possible to find, in a straight-forward way, the analytical solution to some equations related to the passive tracer transport problem in a velocity field that obeys the multidimensional Burgers equation and to a simple model of reactive tracer motion.Comment: revised version 7 pages, Latex, to appear as a letter to J. of Physics

    Complex microwave conductivity of Pr1.85_{1.85}Ce0.15_{0.15}CuO4δ_{4-\delta} thin films using a cavity perturbation method

    Full text link
    We report a study of the microwave conductivity of electron-doped Pr1.85_{1.85}Ce0.15_{0.15}CuO4δ_{4-\delta} superconducting thin films using a cavity perturbation technique. The relative frequency shifts obtained for the samples placed at a maximum electric field location in the cavity are treated using the high conductivity limit presented recently by Peligrad et\textit{et} al.\textit{al.} Using two resonance modes, TE102_{102} (16.5 GHz) and TE101_{101} (13 GHz) of the same cavity, only one adjustable parameter Γ\Gamma is needed to link the frequency shifts of an empty cavity to the ones of a cavity loaded with a perfect conductor. Moreover, by studying different sample configurations, we can relate the substrate effects on the frequency shifts to a scaling factor. These procedures allow us to extract the temperature dependence of the complex penetration depth and the complex microwave conductivity of two films with different quality. Our data confirm that all the physical properties of the superconducting state are consistent with an order parameter with lines of nodes. Moreover, we demonstrate the high sensitivity of these properties on the quality of the films

    Interplay of packing and flip-flop in local bilayer deformation. How phosphatidylglycerol could rescue mitochondrial function in a cardiolipin-deficient yeast mutant

    Get PDF
    In a previous work, we have shown that a spatially localized transmembrane pH gradient, produced by acid micro-injection near the external side of cardiolipin-containing giant unilamellar vesicles, leads to the formation of tubules that retract after the dissipation of this gradient. These tubules have morphologies similar to mitochondrial cristae. The tubulation effect is due to direct phospholipid packing modification in the outer leaflet that is promoted by protonation of cardiolipin headgroups. Here we compare the case of cardiolipin-containing giant unilamellar vesicles with that of phosphatidylglycerol-containing giant unilamellar vesicles. Local acidification also promotes formation of tubules in the latter. However, compared to cardiolipin-containing giant unilamellar vesicles the tubules are longer, exhibit a visible pearling and have a much longer lifetime after acid micro-injection is stopped. We attribute these differences to an additional mechanism that increases monolayer surface imbalance, namely inward PG flip-flop promoted by the local transmembrane pH-gradient. Simulations using a fully non-linear membrane model as well as geometrical calculations are in agreement with this hypothesis. Interestingly, among yeast mutants deficient in cardiolipin biosynthesis, only the crd1-null mutant, which accumulates phosphatidylglycerol, displays significant mitochondrial activity. Our work provides a possible explanation of such a property and further emphasizes the salient role of specific lipids in mitochondrial function.Comment: 28 pages, 10 figure

    A Framework for Verifiable and Auditable Collaborative Anomaly Detection

    Get PDF
    Collaborative and Federated Leaning are emerging approaches to manage cooperation between a group of agents for the solution of Machine Learning tasks, with the goal of improving each agent's performance without disclosing any data. In this paper we present a novel algorithmic architecture that tackle this problem in the particular case of Anomaly Detection (or classification of rare events), a setting where typical applications often comprise data with sensible information, but where the scarcity of anomalous examples encourages collaboration. We show how Random Forests can be used as a tool for the development of accurate classifiers with an effective insight-sharing mechanism that does not break the data integrity. Moreover, we explain how the new architecture can be readily integrated in a blockchain infrastructure to ensure the verifiable and auditable execution of the algorithm. Furthermore, we discuss how this work may set the basis for a more general approach for the design of collaborative ensemble-learning methods beyond the specific task and architecture discussed in this paper

    Triangle percolation in mean field random graphs -- with PDE

    Full text link
    We apply a PDE-based method to deduce the critical time and the size of the giant component of the ``triangle percolation'' on the Erd\H{o}s-R\'enyi random graph process investigated by Palla, Der\'enyi and VicsekComment: Summary of the changes made: We have changed a remark about k-clique percolation in the first paragraph. Two new paragraphs are inserted after equation (4.4) with two applications of the equation. We have changed the names of some variables in our formula

    Probing the role of Nd3+ ions in the weak multiferroic character of NdMn2O5 by optical spectroscopies

    Full text link
    Raman and infrared spectroscopies are used as local probes to study the dynamics of the Nd-O bonds in the weakly multiferroic NdMn2O5 system. The temperature dependence of selected Raman excitations reveals the splitting of the Nd-O bonds in NdMn2O5. The Nd3+ ion crystal field (CF) excitations in NdMn2O5 single crystals are studied by infrared transmission as a function of temperature, in the 1800-8000 cm-1 range, and under an applied magnetic field up to 11 T. The frequencies of all 4Ij crystal-field levels of Nd3+ are determined. We find that the degeneracy of the ground-state Kramers doublet is lifted ({\Delta}0 ~7.5 cm-1) due to the Nd3+-Mn3+ interaction in the ferroelectric phase, below TC ~ 28 K. The Nd3+ magnetic moment mNd(T) and its contribution to the magnetic susceptibility and the specific heat are evaluated from {\Delta}0(T) indicating that the Nd3+ ions are involved in the magnetic and the ferroelectric ordering observed below ~ 28 K. The Zeeman splitting of the excited crystal field levels of the Nd3+ ions at low temperature is also analyzed.Comment: This paper is accepted for publication as a Regular Article in Physical Review

    Fourfold oscillations and anomalous magnetic irreversibility of magnetoresistance in the non-metallic regime of Pr1.85Ce0.15CuO4

    Full text link
    Using magnetoresistance measurements as a function of applied magnetic field and its direction of application, we present sharp angular-dependent magnetoresistance oscillations for the electron-doped cuprates in their low-temperature non-metallic regime. The presence of irreversibility in the magnetoresistance measurements and the related strong anisotropy of the field dependence for different in-plane magnetic field orientations indicate that magnetic domains play an important role for the determination of electronic properties. These domains are likely related to the stripe phase reported previously in hole-doped cuprates.Comment: 11 pages, 5 figure

    Deformation mechanisms and damage of oxide dispersion strengthened steels at high temperature

    Get PDF
    International audienceA ferritic oxide dispersion strengthened steel is under study for fuel cladding applications in future nuclear systems. Tensile tests and creep tests are carried out at various temperatures to determine its mechanical properties along the extrusion direction. For these two types of loading, the material exhibits a high mechanical resistance. Its ductility appears to be strongly influenced by the strain rate and the temperature. Deformation mechanisms linked to diffusion phenomena are suspected and intergranular damage is observed on fractured specimens
    corecore