11,305 research outputs found

    On the surface tension of fluctuating quasi-spherical vesicles

    Full text link
    We calculate the stress tensor for a quasi-spherical vesicle and we thermally average it in order to obtain the actual, mechanical, surface tension τ\tau of the vesicle. Both closed and poked vesicles are considered. We recover our results for τ\tau by differentiating the free-energy with respect to the proper projected area. We show that τ\tau may become negative well before the transition to oblate shapes and that it may reach quite large negative values in the case of small vesicles. This implies that spherical vesicles may have an inner pressure lower than the outer one.Comment: To appear in Eur. Phys. J. E, revised versio

    On the uniqueness for the spatially homogeneous Boltzmann equation with a strong angular singularity

    Full text link
    We prove an inequality on the Wasserstein distance with quadratic cost between two solutions of the spatially homogeneous Boltzmann equation without angular cutoff, from which we deduce some uniqueness results. In particular, we obtain a local (in time) well-posedness result in the case of (possibly very) soft potentials. A global well-posedeness result is shown for all regularized hard and soft potentials without angular cutoff. Our uniqueness result seems to be the first one applying to a strong angular singularity, except in the special case of Maxwell molecules. Our proof relies on the ideas of Tanaka: we give a probabilistic interpretation of the Boltzmann equation in terms of a stochastic process. Then we show how to couple two such processes started with two different initial conditions, in such a way that they almost surely remain close to each other

    Generalization of the noise model for time-distance helioseismology

    Full text link
    In time-distance helioseismology, information about the solar interior is encoded in measurements of travel times between pairs of points on the solar surface. Travel times are deduced from the cross-covariance of the random wave field. Here we consider travel times and also products of travel times as observables. They contain information about e.g. the statistical properties of convection in the Sun. The basic assumption of the model is that noise is the result of the stochastic excitation of solar waves, a random process which is stationary and Gaussian. We generalize the existing noise model (Gizon and Birch 2004) by dropping the assumption of horizontal spatial homogeneity. Using a recurrence relation, we calculate the noise covariance matrices for the moments of order 4, 6, and 8 of the observed wave field, for the moments of order 2, 3 and 4 of the cross-covariance, and for the moments of order 2, 3 and 4 of the travel times. All noise covariance matrices depend only on the expectation value of the cross-covariance of the observed wave field. For products of travel times, the noise covariance matrix consists of three terms proportional to 1/T1/T, 1/T21/T^2, and 1/T31/T^3, where TT is the duration of the observations. For typical observation times of a few hours, the term proportional to 1/T21/T^2 dominates and Cov[τ1τ2,τ3τ4]Cov[τ1,τ3]Cov[τ2,τ4]+Cov[τ1,τ4]Cov[τ2,τ3]Cov[\tau_1 \tau_2, \tau_3 \tau_4] \approx Cov[\tau_1, \tau_3] Cov[\tau_2, \tau_4] + Cov[\tau_1, \tau_4] Cov[\tau_2, \tau_3], where the τi\tau_i are arbitrary travel times. This result is confirmed for p1p_1 travel times by Monte Carlo simulations and comparisons with SDO/HMI observations. General and accurate formulae have been derived to model the noise covariance matrix of helioseismic travel times and products of travel times. These results could easily be generalized to other methods of local helioseismology, such as helioseismic holography and ring diagram analysis

    Discrimination of the light CP-odd scalars between in the NMSSM and in the SLHM

    Full text link
    The presence of the light CP-odd scalar boson predicted in the next-to-minimal supersymmetric model (NMSSM) and the simplest little Higgs model (SLHM) dramatically changes the phenomenology of the Higgs sector. We suggest a practical strategy to discriminate the underlying model of the CP-odd scalar boson produced in the decay of the standard model-like Higgs boson. We define the decay rate of "the non bb-tagged jet pair" with which we compute the ratio of decay rates into lepton and jets. They show much different behaviors between the NMSSM and the SLHM.Comment: 5 pages, 2 figures (5 figure files

    Signal and noise in helioseismic holography

    Full text link
    Helioseismic holography is an imaging technique used to study heterogeneities and flows in the solar interior from observations of solar oscillations at the surface. Holograms contain noise due to the stochastic nature of solar oscillations. We provide a theoretical framework for modeling signal and noise in Porter-Bojarski helioseismic holography. The wave equation may be recast into a Helmholtz-like equation, so as to connect with the acoustics literature and define the holography Green's function in a meaningful way. Sources of wave excitation are assumed to be stationary, horizontally homogeneous, and spatially uncorrelated. Using the first Born approximation we calculate holograms in the presence of perturbations in sound-speed, density, flows, and source covariance, as well as the noise level as a function of position. This work is a direct extension of the methods used in time-distance helioseismology to model signal and noise. To illustrate the theory, we compute the hologram intensity numerically for a buried sound-speed perturbation at different depths in the solar interior. The reference Green's function is obtained for a spherically-symmetric solar model using a finite-element solver in the frequency domain. Below the pupil area on the surface, we find that the spatial resolution of the hologram intensity is very close to half the local wavelength. For a sound-speed perturbation of size comparable to the local spatial resolution, the signal-to-noise ratio is approximately constant with depth. Averaging the hologram intensity over a number NN of frequencies above 3 mHz increases the signal-to-noise ratio by a factor nearly equal to the square root of NN. This may not be the case at lower frequencies, where large variations in the holographic signal are due to the individual contributions of the long-lived modes of oscillation.Comment: Submitted to Astronomy and Astrophysic

    Energy Conversion Using New Thermoelectric Generator

    Full text link
    During recent years, microelectronics helped to develop complex and varied technologies. It appears that many of these technologies can be applied successfully to realize Seebeck micro generators: photolithography and deposition methods allow to elaborate thin thermoelectric structures at the micro-scale level. Our goal is to scavenge energy by developing a miniature power source for operating electronic components. First Bi and Sb micro-devices on silicon glass substrate have been manufactured with an area of 1cm2 including more than one hundred junctions. Each step of process fabrication has been optimized: photolithography, deposition process, anneals conditions and metallic connections. Different device structures have been realized with different micro-line dimensions. Each devices performance will be reviewed and discussed in function of their design structure.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Determination of the interactions in confined macroscopic Wigner islands: theory and experiments

    Full text link
    Macroscopic Wigner islands present an interesting complementary approach to explore the properties of two-dimensional confined particles systems. In this work, we characterize theoretically and experimentally the interaction between their basic components, viz., conducting spheres lying on the bottom electrode of a plane condenser. We show that the interaction energy can be approximately described by a decaying exponential as well as by a modified Bessel function of the second kind. In particular, this implies that the interactions in this system, whose characteristics are easily controllable, are the same as those between vortices in type-II superconductors.Comment: 8 pages, 8 figure

    Alien Registration- Fournier, Avila C. (Lewiston, Androscoggin County)

    Get PDF
    https://digitalmaine.com/alien_docs/29747/thumbnail.jp
    corecore