20 research outputs found

    Progressing Plastics Circularity: A Review of Mechano-Biocatalytic Approaches for Waste Plastic (Re)valorization

    Get PDF
    Inspirational concepts, and the transfer of analogs from natural biology to science and engineering, has produced many excellent technologies to date, spanning vaccines to modern architectural feats. This review highlights that answers to the pressing global petroleum-based plastic waste challenges, can be found within the mechanics and mechanisms natural ecosystems. Here, a suite of technological and engineering approaches, which can be implemented to operate in tandem with nature's prescription for regenerative material circularity, is presented as a route to plastics sustainability. A number of mechanical/green chemical (pre)treatment methodologies, which simulate natural weathering and arthropodal dismantling activities are reviewed, including: mechanical milling, reactive extrusion, ultrasonic-, UV- and degradation using supercritical CO2. Akin to natural mechanical degradation, the purpose of the pretreatments is to render the plastic materials more amenable to microbial and biocatalytic activities, to yield effective depolymerization and (re)valorization. While biotechnological based degradation and depolymerization of both recalcitrant and bioplastics are at a relatively early stage of development, the potential for acceleration and expedition of valuable output monomers and oligomers yields is considerable. To date a limited number of independent mechano-green chemical approaches and a considerable and growing number of standalone enzymatic and microbial degradation studies have been reported. A convergent strategy, one which forges mechano-green chemical treatments together with the enzymatic and microbial actions, is largely lacking at this time. An overview of the reported microbial and enzymatic degradations of petroleum-based synthetic polymer plastics, specifically: low-density polyethylene (LDPE), high-density polyethylene (HDPE), polystyrene (PS), polyethylene terephthalate (PET), polyurethanes (PU) and polycaprolactone (PCL) and selected prevalent bio-based or bio-polymers [polylactic acid (PLA), polyhydroxyalkanoates (PHAs) and polybutylene succinate (PBS)], is detailed. The harvesting of depolymerization products to produce new materials and higher-value products is also a key endeavor in effectively completing the circle for plastics. Our challenge is now to effectively combine and conjugate the requisite cross disciplinary approaches and progress the essential science and engineering technologies to categorically complete the life-cycle for plastics

    Rendering Bio-inert Low-Density Polyethylene Amenable for Biodegradation via Fast High Throughput Reactive Extrusion Assisted Oxidation

    Get PDF
    An energy-efficient high throughput pre-treatment of low-density polyethylene (LDPE) using a fast, reactive extrusion (REX) assisted oxidation technique followed by bacterial attachment as an indicator for bio-amenability was studied. Silicon dioxide (SiO2) was selected as a model oxidizing and catalytic reagent with the REX process demonstrated to be effective both in the presence and absence of the catalyst. Optimized 5-min duration pre-treatment conditions were determined using Box-Behnken design (BBD) with respect to screws speed, operating temperature, and concentration of SiO2. The crystallinity index, carbonyl index and weight loss (%) of LDPE were used as the studied responses for BDD. FTIR and DSC spectra of the residual LDPE obtained after pre-treatment with the REX assisted oxidation technique showed a significant increase in residual LDPE carbonyl index from 0 to 1.04 and a decrease of LDPE crystallinity index from 29 to 18%. Up to fivefold molecular weight reductions were also demonstrated using gel permeation chromatography. Optimum LDPE pre-treatment with a duration of 5 min was obtained at low screw speed (50 rpm), operating temperature of 380-390 degrees C and variable concentration of SiO2 (0 and 2% (w/w)) indicating that effective pre-treatment can occur under noncatalytic and catalysed conditions. Biofilms were successfully formed on pre-treated LDPE samples after 14 days of incubation. Furthermore, the technique proposed in this study is expected to provide a high throughput approach for pre-treatment of pervasive recalcitrant PE-based plastics to reduce their bio inertness.Related to published version:[https://imagine.imgge.bg.ac.rs/handle/123456789/1575]Peer-reviewed manuscript: Ferrero, P., Attallah, O. A., Valera, M. Á., Aleksic, I., Azeem, M., Nikodinovic-Runic, J., & Fournet, M. B. (2022). Rendering Bio-inert Low-Density Polyethylene Amenable for Biodegradation via Fast High Throughput Reactive Extrusion Assisted Oxidation. Journal of Polymers and the Environment, 30(7), 2837–2846.[https://doi.org/10.1007/s10924-022-02400-w

    Upcycling biodegradable pva/starch film to a bacterial biopigment and biopolymer

    Get PDF
    Meeting the challenge of circularity for plastics requires amenability to repurposing post-use, as equivalent or upcycled products. In a compelling advancement, complete circularity for a biodegradable polyvinyl alcohol/thermoplastic starch (PVA/TPS) food packaging film was demonstrated by bioconversion to high-market-value biopigments and polyhydroxybutyrate (PHB) polyesters. The PVA/TPS film mechanical properties (tensile strength (σu), 22.2 ± 4.3 MPa; strain at break (εu), 325 ± 73%; and Young’s modulus (E), 53–250 MPa) compared closely with low-density polyethylene (LDPE) grades used for food packaging. Strong solubility of the PVA/TPS film in water was a pertinent feature, facilitating suitability as a carbon source for bioprocessing and microbial degradation. Biodegradability of the film with greater than 50% weight loss occurred within 30 days of incubation at 37◦C in a model compost. Up to 22% of the PVA/TPS film substrate conversion to biomass was achieved using three bacterial strains, Ralstonia eutropha H16 (Cupriavidus necator ATCC 17699), Streptomyces sp. JS520, and Bacillus subtilis ATCC6633. For the first time, production of the valuable biopigment (undecylprodigiosin) by Streptomyces sp. JS520 of 5.3 mg/mL and the production of PHB biopolymer at 7.8% of cell dry weight by Ralstonia eutropha H16 from this substrate were reported. This low-energy, low-carbon post-use PVA/TPS film upcycling model approach to plastic circularity demonstrates marked progress in the quest for sustainable and circular plastic solutions

    Biotechnological model for ubiquitous mixed petroleum- and bio-based plastics degradation and upcycling into bacterial nanocellulose

    Get PDF
    Ubiquitous post-consumer plastic waste is often physically mixed combining recalcitrant petroleum-based plastics with bioplastics, forming (petro-bio)plastic streams. Finding appropriate end-of-life (EoL) strategies for mixed (petro-bio)plastic waste is highly pertinent in achieving environmental protection, sustainability for plastic value chain industries including recyclers and government policy makers worldwide. The presence of bioplastic mixed in with polyethylene terephthalate (PET) or other petroleum-based plastic streams poses a substantial drawback to mechanical recycling and strongly impedes the development of sustainable EoL routes. Here, we present a model system for the sustainable management of mixed (petro-bio)plastic waste, demonstrating a biotechnological route through synergy-promoted enzymatic degradation of PET–representing petrochemical polyester plastic–mixed with thermoplastic starch (TPS)–as a model bioplastic. Leaf-branch compost cutinase (LCCICCG) and commercial amylase (AMY) deliver effective depolymerization of this mixed (petro-bio)plastic material, with subsequent bio-upcycling of the mixed waste stream into bacterial nanocellulose (BNC) by Komagataeibacter medellinensis. Compared to LCCICCG and AMY, the LCCICCG/AMY combined treatment synergistically produced a 2.6- and 4.4-fold increase in enzymatic decomposition at 70 °C in four days, respectively, yielding sugars and terephthalic acid (TPA) as the main depolymerization building blocks. Bio-upcycling of post-enzymatic degradation hydrolysates resulted in a high BNC yield of 3 g L−1 after 10 days. This work paves the way for sustainable management routes for challenging mixed recalcitrant plastic and bioplastic waste and prepares opportunities for its participation in the circular production of sustainable eco-polymers

    Enhanced Antimicrobial Activity of Biocompatible Bacterial Cellulose Films via Dual Synergistic Action of Curcumin and Triangular Silver Nanoplates

    Get PDF
    Curcumin and triangular silver nanoplates (TSNP)-incorporated bacterial cellulose (BC) films present an ideal antimicrobial material for biomedical applications as they afford a complete set of requirements, including a broad range of long-lasting potency and superior efficacy antimicrobial activity, combined with low toxicity. Here, BC was produced by Komagataeibacter medellinensis ID13488 strain in the presence of curcumin in the production medium (2 and 10%). TSNP were incorporated in the produced BC/curcumin films using ex situ method (21.34 ppm) and the antimicrobial activity was evaluated against Escherichia coli ATCC95922 and Staphylococcus aureus ATCC25923 bacterial strains. Biological activity of these natural products was assessed in cytotoxicity assay against lung fibroblasts and in vivo using Caenorhabditis elegans and Danio rerio as model organisms. Derived films have shown excellent antimicrobial performance with growth inhibition up to 67% for E. coli and 95% for S. aureus. In a highly positive synergistic interaction, BC films with 10% curcumin and incorporated TSNP have shown reduced toxicity with 80% MRC5 cells survival rate. It was shown that only 100% concentrations of film extracts induce low toxicity effect on model organisms’ development. The combined and synergistic advanced anti-infective functionalities of the curcumin and TSNP incorporated in BC have a high potential for development for application within the clinical setting

    A novel Bacillus subtilis BPM12 with high bis(2 hydroxyethyl)terephthalate hydrolytic activity efficiently interacts with virgin and mechanically recycled polyethylene terephthalate

    Get PDF
    Biotechnological treatment of plastic waste has gathered substantial attention as an efficient and generally greener approach for polyethylene terephthalate (PET) depolymerization and upcycling in comparison to mechanical and chemical processes. Nevertheless, a suitable combination of mechanical and microbial degradation may be the key to bringing forward PET upcycling. In this study, a new strain with an excellent bis(2 hydroxyethyl)terephthalate (BHET) degradation potential (1000 mg/mL in 120 h at 30 °C) and wide temperature (20-47 °C) and pH (5-10) tolerance was isolated from a pristine soil sample. It was identified as Bacillus subtilis BPM12 via phenotypical and genome analysis. A number of enzymes with potential polymer degrading activities were identified, including carboxylesterase BPM12CE that was efficiently expressed both, homologously in B. subtilis BPM12 and heterologously in B. subtilis 168 strain. Overexpression of this enzyme enabled B. subtilis 168 to degrade BHET, while the activity of BPM12 increased up to 1.8-fold, confirming its BHET-ase activity. Interaction of B. subtilis BPM12 with virgin PET films and films that were re-extruded up to 5 times mimicking mechanical recycling, revealed the ability of the strain to attach and form biofilm on each surface. Mechanical recycling resulted in PET materials that are more susceptible to chemical hydrolysis, however only slight differences were detected in biological degradation when BPM12 whole-cells or cell-free enzyme preparations were used. Mixed mechano/bio-degradation with whole-cells and crude enzyme mixes from this strain can serve to further increase the percentage of PET- based plastics that can enter circularity

    Exploring Microorganisms from Plastic-Polluted Sites: Unveiling Plastic Degradation and PHA Production Potential

    Get PDF
    The exposure of microorganisms to conventional plastics is a relatively recent occurrence, affording limited time for evolutionary adaptation. As part of the EU-funded project BioICEP, this study delves into the plastic degradation potential of microorganisms isolated from sites with prolonged plastic pollution, such as plastic-polluted forests, biopolymer-contaminated soil, oil-contaminated soil, municipal landfill, but also a distinctive soil sample with plastic pieces buried three decades ago. Additionally, samples from Arthropoda species were investigated. In total, 150 strains were isolated and screened for the ability to use plastic-related substrates (Impranil dispersions, polyethylene terephthalate, terephthalic acid, and bis(2-hydroxyethyl) terephthalate). Twenty isolates selected based on their ability to grow on various substrates were identified as Streptomyces, Bacillus, Enterococcus, and Pseudomonas spp. Morphological features were recorded, and the 16S rRNA sequence was employed to construct a phylogenetic tree. Subsequent assessments unveiled that 5 out of the 20 strains displayed the capability to produce polyhydroxyalkanoates, utilizing pre-treated post-consumer PET samples. With Priestia sp. DG69 and Neobacillus sp. DG40 emerging as the most successful producers (4.14% and 3.34% of PHA, respectively), these strains are poised for further utilization in upcycling purposes, laying the foundation for the development of sustainable strategies for plastic waste management

    Progressing Ultragreen, Energy-Efficient Biobased Depolymerization of Poly(ethylene terephthalate) via Microwave-Assisted Green Deep Eutectic Solvent and Enzymatic Treatment

    No full text
    Effective interfacing of energy-efficient and biobased technologies presents an all-green route to achieving continuous circular production, utilization, and reproduction of plastics. Here, we show combined ultragreen chemical and biocatalytic depolymerization of polyethylene terephthalate (PET) using deep eutectic solvent (DES)-based low-energy microwave (MW) treatment followed by enzymatic hydrolysis. DESs are emerging as attractive sustainable catalysts due to their low toxicity, biodegradability, and unique biological compatibility. A green DES with triplet composition of choline chloride, glycerol, and urea was selected for PET depolymerization under MW irradiation without the use of additional depolymerization agents. Treatment conditions were studied using Box-Behnken design (BBD) with respect to MW irradiation time, MW power, and volume of DES. Under the optimized conditions of 20 mL DES volume, 260 W MW power, and 3 min MW time, a significant increase in the carbonyl index and PET percentage weight loss was observed. The combined MW-assisted DES depolymerization and enzymatic hydrolysis of the treated PET residue using LCC variant ICCG resulted in a total monomer conversion of ≈16% (w/w) in the form of terephthalic acid, mono-(2-hydroxyethyl) terephthalate, and bis-(2-hydroxyethyl) terephthalate. Such high monomer conversion in comparison to enzymatically hydrolyzed virgin PET (1.56% (w/w)) could be attributed to the recognized depolymerization effect of the selected DES MW treatment process. Hence, MW-assisted DES technology proved itself as an efficient process for boosting the biodepolymerization of PET in an ultrafast and eco-friendly manner

    Bone Tissue Engineering Scaffold Optimisation through Modification of Chitosan/Ceramic Composition

    No full text
    A large bone defect is defined as a defect that exceeds the regenerative capacity of the bone. Nowadays, autologous bone grafting is still the gold standard treatment. In this study, a hybrid bone tissue engineering scaffold (BTE) was designed with biocompatibility, biodegradability and adequate mechanical strength as the primary objectives. Chitosan (CS) is a biocompatible and biodegradable polymer that can be used in a wide range of applications in bone tissue engineering. Hydroxyapatite (HAp) and fluorapatite (FAp) have the potential to improve the mechanical properties of CS. In the present work, different volumes of acetic acid (AA) and different ratios of HAp and FAp scaffolds were prepared and UV cross-linked to form a 3D structure. The properties of the scaffolds were characterised by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, swelling studies and compression testing. The cytotoxicity result was obtained by the MTT assay. The degradation rate was tested by weight loss after the scaffold was immersed in SBF. The results showed that a crosslinked structure was formed and that bonding occurred between different materials within the scaffold. Additionally, the scaffolds not only provided sufficient mechanical strength but were also cytocompatibility, depending on their composition. The scaffolds were degraded gradually within a 6-to-8-week testing period, which closely matches bone regeneration rates, indicating their potential in the BTE field

    Composite Films of Thermoplastic Starch and CaCl2 Extracted from Eggshells for Extending Food Shelf-Life

    No full text
    Calcium chloride (CaCl2) has been widely used to maintain the quality of fresh-cut fruits and vegetables because it stabilizes and strengthens the membrane system against fungal attacks. It is mainly applied via spray coating and dip coating techniques. This study explored a method of incorporating calcium chloride extracted from eggshells in a packaging material, thermoplastic starch (TPS), via a hot-melt extrusion process. The composites were characterized by FTIR, DSC, SEM-EDX and tensile testing. FTIR confirmed the chemical reactions between CaCl2 and TPS. DSC results showed a significant decrease in the heat of fusion by adding 20 wt% of CaCl2 content in TPS, indicating a drop in the degree of crystallinity. The Young’s modulus of TPS was not significantly affected by the incorporation of 10 wt% CaCl2 (P = 0.968), but reduced notably with the addition of 20 wt% CaCl2 (P = 0.05), indicating the plasticizer effect of the CaCl2. Physiochemical analysis of fresh-cut apple slices was assessed. Samples placed on the surface of the TPS/CaCl2 composites displayed less pH reduction, reduced antioxidant activity, more weight loss and increased reducing sugar compared to the samples placed on the surface of virgin TPS films. CaCl2 released from the TPS/CaCl2 films was measured and their antimicrobial activity was confirmed by bacterial inhibitory growth assessment. Fungal growth was observed on apple slices placed on virgin TPS film by day 21 while apple slices placed on TPS/CaCl2 20 wt% composites did not support any fungal growth for 28 days. In summary, TPS and eggshell-extracted CaCl2 showed the ability to maintain the quality of fresh-cut apples, and TPS/CaCl2 10 wt% composite could be a good option as a packaging material for fresh-cut fruits due to active antimicrobial activity and maintained Young’s modulus
    corecore