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Abstract 4 

Biotechnological treatment of plastic waste has gathered substantial attention as an efficient 5 

and generally greener approach for polyethylene terephthalate (PET) depolymerization and 6 

upcycling in comparison to mechanical and chemical processes. Nevertheless, a suitable 7 

combination of mechanical and microbial degradation may be the key to bringing forward 8 

PET upcycling. In this study, a new strain with an excellent bis(2 hydroxyethyl)terephthalate 9 

(BHET) degradation potential (1000 mg/mL in 120 h at 30 °C) and wide temperature (20-47 0 

°C) and pH (5-10) tolerance was isolated from a pristine soil sample. It was identified as 1 

Bacillus subtilis BPM12 via phenotypical and genome analysis. A number of enzymes with 2 

potential polymer degrading activities were identified, including carboxylesterase BPM12CE 3 

that was efficiently expressed both, homologously in B. subtilis BPM12 and heterologously 4 

in B. subtilis 168 strain. Overexpression of this enzyme enabled B. subtilis 168 to degrade 5 

BHET, while the activity of BPM12 increased up to 1.8-fold, confirming its BHET-ase 6 

activity. Interaction of B. subtilis BPM12 with virgin PET films and films that were re-7 

extruded up to 5 times mimicking mechanical recycling, revealed the ability of the strain to 8 

attach and form biofilm on each surface. Mechanical recycling resulted in PET materials that 9 

are more susceptible to chemical hydrolysis, however only slight differences were detected in 0 

biological degradation when BPM12 whole-cells or cell-free enzyme preparations were used. 1 

Mixed mechano/bio-degradation with whole-cells and crude enzyme mixes from this strain 2 

can serve to further increase the percentage of PET- based plastics that can enter circularity.  3 

 4 

Keywords: polyethylene terephthalate (PET); recycling; biocatalysis; Bacillus; BHET-ase; 5 

carboxylesterase  6 
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1. Introduction 7 

In the last decade, global plastic production reached over 360 million tons annually 8 

(Magalhães et al., 2021, ). Plastic pollution has become the focus of numerous scientific 9 

studies and industry lead-efforts (Laskar & Kumar, 2019). However, the solution for efficient 0 

large-scale plastic degradation/regeneration and recycling remains elusive. Further 1 

exaggerating the environmental impacts, plastic production uses about 8% of the world’s 2 

fossil fuel resources, releasing greenhouse gasses and contributing to global warming (Samak 3 

et al., 2020). Europe is the leader in plastic recycling, with close to 29 million tons of post-4 

consumer plastics collected out of 55 million tons produced in 2020. However, only 34.6% of 5 

collected materials were recycled while 42% were incinerated for energy recovery and 23.4% 6 

were landfilled (PlasticsEurope, 2021). Hence, additional research is needed to develop 7 

efficient strategies for tackling the problem of plastic waste accumulation and its adverse 8 

effects on the environment and health. 9 

Polyethylene terephthalate (PET) is a synthetic polyester with a heteroatomic 0 

backbone made by reacting ethylene glycol (EG) and terephthalic acid (TPA). It represents 1 

8.4% (w/w) of the total plastic produced and it is mainly used for beverage bottles 2 

(Kosiorowska et al., 2022). Efficient PET recovery of high-grade PET waste, such as 3 

beverage bottles, has been developed to provide “clean” and “high purity” PET waste streams 4 

for recycling. Recovered PET can undergo re-extrusion (enabling recovery of 5 

uncontaminated PET scraps in manufacturing plants), mechanical recycling (reprocessing 6 

PET into granules via extrusion processes yielding PET with reduced performances), 7 

chemical recycling (a variety of chemical processes for the depolymerization of PET and 8 

subsequent repolymerization into new polymers) and energy recovery (Benyathiar et al., 9 

2022). Recycled PET is a commodity with many end uses, for the benefit of society and the 0 

environment. Traditionally mechanical recycling is the most widely used method of PET 1 
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recycling and its application is likely to increase in the following years due to its low energy 2 

consumption and absence of use of hazardous chemical reagents (Suzuki et al., 2022). Rules 3 

have been adopted to ensure that recycled plastic can be safely used in food packaging and 4 

contribute to the overall sustainability towards achieving the objectives of the Circular 5 

Economy Action Plan (Commission, 2022). Processing including solid state 6 

polycondensation (SSP) can increase molecular weight and achieve parameters required to 7 

produce food contact approved PET according to regulation (EU) No 10/2011 and No 8 

64/201. On the other side, chemical recycling can be applied to a wider range of mixed 9 

plastic waste but in many cases carries the burden of involving additional harmful chemicals 0 

and costs in the processes. Through chemical recycling, even multilayer colored PET plastic 1 

waste can be depolymerized into its main building blocks, allowing repolymerization 2 

following arduous purification or in the case of polyolefins, liquefication through a thermo-3 

chemical process can be used for conversion into products similar to crude oil (Ragaert et al., 4 

2017). Therefore, milder conditions for chemical recycling and combination with other lower 5 

carbon means of polymer depolymerization should be explored. 6 

In contrast to mechanical and chemical recycling, biocatalysis has emerged as an 7 

environmentally friendly and efficient approach for PET recycling (Nguyen et al., 2023; Wei 8 

& Zimmermann, 2017). The ester bonds which make up the backbone of the polyester 9 

polymer are susceptible to enzymatic degradation via hydrolysis by a number of enzymes 0 

with esterase activities, including PETases, lipases, cutinases and carboxylesterases (Jaiswal 1 

et al., 2020; Nikolaivits et al., 2021). The highly hydrophobic PET polymer is broken down 2 

into a variety of largely soluble oligomer degradation intermediates during enzymatic 3 

degradation. Through a series of endo- and exo- cleavages of ester bonds, products such as 4 

bis(2 hydroxyethyl)terephthalate (BHET), mono(2-hydroxyethyl)terephthalate (MHET), TPA 5 

and EG or their mixtures can be obtained (Mrigwani et al., 2022). TPA can then be purified 6 
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and reused for PET manufacturing thus providing a route for a circular economy (Tournier et 7 

al., 2020). PET hydrolysis products can also be upcycled to commodity chemicals (Kim et 8 

al., 2019), polyhydroxyalkanoates (Kenny et al., 2008; Tiso et al., 2021), or even lycopene 9 

(Diao et al., 2023). 0 

Research into the biological degradation of PET has revealed numerous bacterial and 1 

fungal strains harboring PET-degrading enzymes with over 8000 putative ortholog PETases 2 

identified in the genome databases (Gambarini et al., 2021). Highly efficient enzymes such as 3 

IsPETase from the bottle-dwelling bacterium Ideonella sakaiensis (Yoshida et al., 2016), or 4 

leaf-branch compost cutinase (LCC) identified through functional metagenomic screening 5 

(Sulaiman et al., 2012) have been reported to hydrolyze PET. Although biocatalytic processes 6 

are generally considered environmentally friendly, an in-depth life cycle assessment (LCA) 7 

of the enzymatic PET recycling revealed that it has up to 17 times worse environmental 8 

impact than manufacturing PET from virgin monomers (Uekert et al., 2022). To make 9 

biocatalytic and biotechnological processes truly advantageous further optimization work is 0 

needed. 1 

The usefulness of PET oligomer degrading enzymes has been demonstrated in 2 

systems combining chemical and biological degradation, as well. PET degradation products 3 

obtained by glycolysis were efficiently converted to TPA by the addition of the Bs2Est 4 

esterase from Bacillus subtilis and subsequently transformed to catechol by an engineered 5 

Escherichia coli strain (Kim et al., 2021). Therefore, when searching for novel strains with 6 

PET degrading ability, it is important to search for enzymes that show high activity towards 7 

PET oligomers and other partial degradation products. This opens up the possibility of 8 

combining mechano- and green chemical depolymerizations with biocatalysis, as partially 9 

degraded polymers are still preferred substrates for enzymes and microorganisms. 0 
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In this study, an effort has been made to: (i) isolate and characterize a new bacterial 1 

strain capable of efficient degradation of BHET and other PET degradation intermediates, (ii) 2 

determine the enzymes responsible for this activity through genome analysis and expression 3 

of selected ones; (iii) and explore and evaluate how this strain can be utilized in biocatalytic 4 

degradation of multiple times extruded PET polymers mimicking the mechanical recycling 5 

process. 6 

 7 

2. Materials and methods 8 

2.1. Chemicals and reagents 9 

Virgin polyethylene terephthalate (V-PET) resin in granulated form was purchased 0 

from Alpek Polyester UK Ltd. (Lazenby, UK). Components used to prepare media for 1 

bacterial growth were supplied by Acros Organics (Geel, Netherlands) Plastic monomers and 2 

polymers terephthalic acid (TPA), bis(2 hydroxyethyl) terephthalate (BHET), 3 

polycaprolactone diol (PCL) were purchased from Sigma Aldrich (Hamburg, Germany), 4 

Impranil DLN SD and Impranil DL 2077 from Covestro (Leverkusen, Germany). PET 5 

monomers and oligomers (1MER (1-(2-hydroxyethyl)-4-methylterephthalate), 1.5MER 6 

(ethylene glycol bis(methyl terephthalate)), 2MER (methyl bis(2-hydroxyethyl terephthalate)) 7 

and 3MER (methyl tris(2-hydroxyethyl terephthalate)) (Fig. S1) were previously synthesized 8 

and described (Djapovic et al., 2021). Analytical grades of sodium hydroxide (98%), ethylene 9 

glycol (99%) (EG), kanamycin, and other salts and solvents were obtained from Sigma 0 

Aldrich (Hamburg, Germany). Restriction enzymes and lysozyme were purchased from 1 

Promega (Madison, USA). 2 

 3 

2.2. Isolation, identification, and morphology of strain BPM12 4 
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Strain BPM12 was isolated from soil with limited vegetation (Maganik, Montenegro, 5 

with coordinates: 42°43′54″N  19°17′02″E) using standard nutrient rich LB agar (Luria 6 

Bertani agar, 10 g/L tryptone, 5 g/L yeast extract, 10 g/L NaCl and 15 g/L agar) as a part of 7 

the effort to make a diverse in-house microbial collection. This collection was used for a 8 

variety of bioprospecting studies including plastic degradation. The growth of BPM12 was 9 

assessed and compared to B. subtilis 168 Marburg (MoBiTec, Goettingen, Germany) on MSF 0 

(Mannitol soy flower, 20 g/L soy flower, 20 g/L mannitol and 20 g/L agar), MSM (Minimal 1 

Salt Medium, 9 g/L Na2HPO4 × 12H2O, 1.5 g/L KH2PO4, 1 g/L NH4Cl, 0.2 g/L MgSO4 × 2 

7H2O, 0.2 g/L CaCl2 × 2H2O, 0.1% trace elements solution, 0.025% N-Z amine, 15 g/L agar 3 

and 20 g/L glucose as carbon source) and LB plates at 30 °C. Growth temperature (15-47 °C) 4 

and pH (pH 2-12, adjusted with HCl and NaOH) ranges were tested in LB broth. 1% of 5 

overnight culture in LB was used as inoculum and the growth was monitored by measuring 6 

the absorbance at 600 nm (Ultrocpec 3300pro, Amersham Biosciences, Amersham, UK) after 7 

24 h of incubation in an orbital shaker at 180 rpm (MaxQ 6000, Thermo Fisher Scientific, 8 

Waltham, USA). 9 

The ability to ferment different carbohydrate substrates was assessed using an API 50 0 

CHB test kit (bioMerieux, Marcyl’Etoile, France) and hemolytic activity was tested using 1 

blood agar. For further identification of BPM12, 16S rDNA was amplified via PCR 2 

(FastGene TAQ PCR Kit, Nippon Genetics, Düren, Germany) using standard 1492R and 27F 3 

primers and sequenced by Macrogen Europe BV (Amsterdam, Netherlands). The strain was 4 

identified using BLAST (Basic Local Alignment Search Tool; 5 

https://blast.ncbi.nlm.nih.gov/Blast.cgi), while the sequences were analyzed, and the 6 

phylogenetic tree was constructed using Mega 7 program (Molecular Evolutionary Genetics 7 

Analysis; www.megasoftware.net/home) and Maximal likelihood method. 8 
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The morphology of the cells was assessed using fluorescent microscopy. An overnight 9 

culture of BPM12 from LB medium was collected by centrifugation (10 min at 5000 g, 0 

Eppendorf 5804 centrifuge, Hamburg, Germany), washed and resuspended using phosphate-1 

buffered saline (PBS) (8 g/L NaCl, 0.2 g/L KCl, 1.44 g/L Na2HPO4, 0.24 g/L KH2PO4; pH 2 

7.2). Cells were fixed with paraformaldehyde and stained with 10 µg/mL of Cl-TO-5 dye 3 

dissolved in PBS for 30 min at room temperature in the dark (Kurutos et al., 2020). The cells 4 

were visualized using an Olympus BX51 (Applied Imaging Corp., San Jose, USA) 5 

fluorescent microscope under 100000 × magnification.  6 

 7 

2.3. Assessment of B. subtilis BPM12 plastic degrading potential  8 

The plastic degrading potential of this bacterial strain was assessed using MSM agar 9 

plates supplemented with different plastic polymers and monomers as the sole carbon source 0 

applying previously described methodology (Molitor et al., 2020). The following substrates 1 

were used: TPA 10 g/L, BHET 10 g/L, PCL 6 g/L, Impranil DLN SD 6 g/L and Impranil DL-2 

2077 9 g/L. The polymers and monomers were sonicated (Soniprep 150, MSE (UK) Ltd., 3 

Lindon, UK) for 10 min at 10 kHz before adding to the medium to obtain a stable suspension. 4 

The plates were incubated for 10 days at 30 °C and the formation of clearing zones was 5 

considered as a positive result.  6 

2.3.1. Biotransformation of PET-related model substrates 7 

BHET and four PET-related model substrates (Djapovic et al., 2021) were used to 8 

further investigate the PET degrading potential of strain BPM12. Reactions were carried out 9 

in 3 mL of MSM medium with 1 mg/mL of PET-related model substrates (added from stock 0 

solutions of 30 mg/mL in methanol). Bacterial cells from fresh LB agar plates were scraped 1 

with inoculating loop and resuspended in MSM medium to make resting cells suspension of 2 

20 mg wet weight per mL and 100 µL of the cell suspension was added to all reactions. 3 
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Reactions were incubated for 5 days at 30 °C and 150 rpm (MaxQ 6000, Thermo Fisher 4 

Scientific, Waltham, USA).  5 

To monitor the reaction progress, reaction products were extracted from 100 µL using 6 

ethyl acetate and analyzed using thin layer chromatography (TLC) on alumina plates with 7 

0.25 mm silica layer (TCL Silica gel 60 F254, Sigma Aldrich (Hamburg, Germany). The 8 

solvent system was chloroform/methanol (8:2) and visualized using UV light at 254 nm 9 

(Camag UV Lamp, Camag, Wilmington, USA).  0 

 1 

2.3.2. High-performance liquid chromatography (HPLC) coupled with mass spectrometry 2 

(MS) analysis of biotransformation products  3 

Samples were prepared by adding 1 µL of 6 M HCl to 1 mL of the reaction aliquot, 4 

vortexed and centrifuged for 10 min at 12000 g (Eppendorf Centrifuge 5417 R, Hamburg, 5 

Germany). The supernatant was filtered through 0.2 µm syringe filters. An UltiMate 3000 6 

HPLC (Thermo Fisher Scientific, Waltham, USA) equipped with a Eurospher II 100-3 C18A 7 

150 × 4.6 mm (Knauer, Berlin, Germany) column was used for HPLC analysis. The mobile 8 

phase consisted of 20% (v/v) acetonitrile and 80% (v/v) 2.5 mM sulfuric acid in ultrapure 9 

water at a flow rate of 0.8 mL/min under isocratic conditions. Detection of reaction products 0 

was carried out at 241 nm. The total run time was 25 min. 1 

The exact masses of PET-related model substrate degradation products were confirmed 2 

using the same HPLC method (at a flow rate of 0.3 mL/min) and a TSQ FortisTM Plus triple 3 

quadrupole mass spectrometer (Thermo Fisher Scientific, Waltham, USA) equipped with an 4 

H-ESI source in mixed scan mode and single ion monitoring (SIM) scan type. The ionization 5 

parameters were: 4500 V positive spray voltage, 2600 V negative spray voltage, 50 arbitrary 6 

units (arb) sheath gas flow rate, 10 arb aux gas flow rate, 325 °C ion transfer tube 7 

temperature and 350 °C vaporizer temperature. 8 



Journal Pre-proof

21

22

22

22

22

22

22

22

22

22

22

23

23

23

23

23

23

23

23

23

23

24

24

24

24
 Jo
ur

na
l P

re
-p

ro
of

10 
 

 9 

2.4. BPM12 genome sequencing, annotation and analysis 0 

A 350-bp insert size library was prepared and sequenced in paired-end mode (read 1 

length, 150 bp) by Novogene Europe on a NovaSeq 6000 (Illumina, San Diego, USA) 2 

instrument and a total of 4,607,303 paired reads were generated. Raw reads were 3 

preprocessed with TrimGalore v0.6.5 and cutadapt v2.9 (Martin, 2011). The Illumina adapter 4 

sequences were removed (with a stringency of 3), bases with a quality score less than 10 were 5 

trimmed and reads smaller than 100 bases or with no pair were discarded. De novo genome 6 

assembly was performed with Spades v3.13.0 (Bankevich et al., 2012). Genome 7 

completeness was assessed with BUSCO v5.1.2 using the Bacillales single-copy orthologs 8 

from OrthoDB v10 (Manni et al., 2021). Strain BPM12 was phylogenetically classified with 9 

the Genome Taxonomy Database Toolkit v2.0.0 (Chaumeil et al., 2020) against the GTDB 0 

release 207. 1 

Gene prediction and functional annotation were performed with the NCBI Prokaryotic 2 

Genome Annotation Pipeline (PGAP, release 2022-10-03) (Li et al., 2021). Protein sequences 3 

were searched against the InterPro database with InterProScan v5.59-91.0 (Jones et al., 2014) 4 

and for signal peptides with SignalP v6.0 (Teufel et al., 2022). This Whole Genome Shotgun 5 

project has been deposited at DDBJ/ENA/GenBank under the accession JAOYTF010000000.  6 

The proteome of BPM12 was searched for homologs of biochemically characterized 7 

plastic-active enzymes from the PAZy database (Buchholz et al., 2021) with BLAST. The 8 

alignments were filtered for protein sequence identity > 40% and for >70% alignment 9 

coverage of both the template and the target sequence. Next, the proteomes of 3 other 0 

Bacillus strains with reported activity on PET from RefSeq were gathered and clustered into 1 

homologous groups with the protein sequences of BPM12 using the Get_Homologues 2 

software (Contreras-Moreira & Vinuesa, 2013) with the bidirectional BLAST best-hit option 3 
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and default settings. The three Bacillus strains were: Bacillus sp. AIIW2, B. albus PFYN01 4 

and B. thuringiensis C15 (accession numbers: GCF_009932115.1, GCF_004153665.1 and 5 

GCF_004153515.1, respectively). 6 

 7 

2.5. Overexpression and deletion of BPM12 carboxylesterase  8 

BPM12 carboxylesterase (bpm12CE gene) was amplified via PCR (FastGene TAQ 9 

PCR Kit, Nippon Genetics, Düren, Germany) from BPM12 genomic DNA using BPM12CEF 0 

and BPM12CER primers containing the HindIII and BamHI restriction sites (Table S1). The 1 

amplicon was cloned into pGEM T-Easy (Promega, Madison, USA) vector, clones were 2 

confirmed via PCR amplification of the Bpm12CE gene and the appropriate restriction digest. 3 

The bpm12CE gene was then transferred to the pBE-S vector (Takara Bio, Shiga, Japan) 4 

using the HindIII and BamHI restriction enzymes. The pBE-S + bpm12CE plasmid constructs 5 

were used for the transformation of B. subtilis 168 Marburg (MoBiTec, Goettingen, 6 

Germany) cells and B. subtilis BPM12 using electroporation following the previously 7 

developed protocol (Yi & Kuipers, 2017). To create a bpm12CE knockout mutant a fusion 8 

gene consisting of two 1.5 kb flanking regions of bpm12CE and spectinomycin resistance 9 

gene was constructed using a set of primers shown in Table S1 and the NEBuilder HiFi DNA 0 

Assembly kit (New England Biolabs, Ipswich, USA). The fragment was used to transform B. 1 

subtilis BPM12 cells and bpm12CE was exchanged with the spectinomycin resistance gene. 2 

The knockout mutants were selected using spectinomycin 100 µg/mL and were confirmed via 3 

PCR using appropriate primers.  4 

Growth and clearance of BHET by recombinant strains was assessed on LB and MSM 5 

agar plates containing 5 g/L of BHET and kanamycin 50 µg/mL or spectinomycin 100 µg/mL 6 

and agar 15 g/L. Recombinant strains were also used in biotransformation reactions of BHET 7 

as described previously. 8 
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The esterase activity of the recombinant strains was tested using p-nitrophenyl 9 

butyrate (pNPB) as substrate (Jaeger & Kovacic, 2014). The assay reagent was prepared by 0 

dissolving 0.088 g/L pNPB in 20 mM Na-phosphate buffer (pH 7.2) with 0.17 g/L SDS and 1 

10 g/L Triton-X-100. Protein preparations (50 µL) were added to 150 µL of the reagent and 2 

incubated for 5 min at 30 °C. The reaction was monitored at 410 nm (Epoch Microplate 3 

Spectrometer, BioTek, Winooski, USA). The protein concentration of samples was 4 

determined using Bicinchoninic Acid Kit for Protein Determination (Sigma Aldrich, 5 

Hamburg, Germany) and adjusted to 500 µg/mL.  6 

 7 

2.6. Interaction of BPM12 with PET materials 8 

2.6.1. Preparation of multiple mechanically recycled PET films  9 

V-PET pellets were dried for 6 h at 150 °C in a Universal Oven U (Memmert GmbH, 0 

Schwabach, Germany) under forced ventilation until moisture content was below 0.005%. 1 

Mechanical recycling of PET was simulated by means of hot melt extrusion (Fig. S2). A 2 

bench-top PrismTM twin-screw extruder (Thermo Electron GmbH, Karlsruhe, Germany) was 3 

used to produce the samples used in this study. The diameter of the screws used was 16 mm, 4 

with a 25/1 length-to-diameter ratio, at a screw speed of 50 rpm. A temperature profile of 70, 5 

230, 250, 250 and 250 °C for the five temperature control zones, followed by a 3-roll 6 

calendar configuration used to form films. The virgin resin was extruded and reprocessed to 7 

produce the following materials: V-PET (0 recycling cycles), R2-PET (2 recycling cycles), 8 

and R5-PET (5 recycling cycles). Film samples were scissors cut into pieces (ca. 1 × 2 cm). 9 

2.6.2. Characterization of virgin and multiple mechanically recycled PET films 0 

Fourier Transform Infrared Spectroscopy (FTIR) was used to monitor chemical 1 

changes of extruded PET samples. Infrared spectra were obtained using a Perkin Elmer 2 

Spectrum One fitted with a universal attenuated total reflectance (ATR) sampling accessory 3 
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(PerkinElmer, Waltham, USA), recorded over 16 scan cycles with a resolution of 4 cm-1 in 4 

the spectral range of 4000–650 cm−1 against air as background at room temperature (20 °C), 5 

at a resolution of 0.5 cm−1 under a fixed universal compression force of 80 N. FTIR results 6 

were used to determine the ester carbonyl index (CI) that is a parameter used to investigate 7 

the degree of degradation of PET samples before and after chemical and biological 8 

treatments, as expressed in the following Eq. (1): 9 

𝐶𝐶𝐶𝐶 =  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 1713 𝑐𝑐𝑐𝑐−1/𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 1408 𝑐𝑐𝑐𝑐−1  (1) 0 

The thermal behavior of extruded PET samples was studied by Differential Scanning 1 

Calorimetry (DSC) recorded on a 2920 Modulated DSC (TA Instruments, New Castle, USA), 2 

previously calibrated with indium standard. Samples of 6 to 9 mg were weighted on an 3 

Explorer EX124 analytical balance (OHAUS Corporation, Parsippany, USA). Thermal 4 

analysis was conducted from 30 °C to 275 °C at a heating rate of 10 °C/min using nitrogen as 5 

purge gas at a flow rate of 30 mL/min. The crystallinity index (Xc) was calculated from the 6 

second heating cycle as follows (Eq. 2): 7 

𝑋𝑋𝑐𝑐  (%) = ((∆𝐻𝐻𝑚𝑚 − ∆𝐻𝐻𝑐𝑐)/∆𝐻𝐻𝑚𝑚° ) 𝑥𝑥 100  (2) 8 

where, ∆𝐻𝐻𝑚𝑚 is the apparent melt enthalpy of the specimen tested, ∆𝐻𝐻𝑐𝑐 is the heat of 9 

cold crystallization, and ∆𝐻𝐻𝑚𝑚°  is a reference value that represents the heat of melting if the 0 

PET were 100% crystalline (140 J/g) (Wunderlich, 1973). 1 

Scanning electron microscopy (SEM) images were obtained using Mira XMU SEM 2 

(Tescan™, Brno, Czech Republic) in backscattered electron mode for surface analysis. The 3 

accelerating voltage used was 10 kV. Prior to analysis, tested samples were placed on an 4 

aluminum stub and sputtered with a thin layer of gold using a Baltec SCD 005 sputter coater 5 

(New York, United States) for 110 s at 0.1 mbar vacuum. 6 

2.6.3. Chemical recycling of virgin and recycled PET via microwave (MW) assisted 7 

hydrolysis 8 
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The efficiency of MW-assisted hydrolytic depolymerization of PET was evaluated 9 

following previously published work with slight modification (Azeem et al., 2022). 0 

Typically, V-PET, R2-PET and R5-PET films were separately mixed in 10% (w/v) sodium 1 

carbonate (Na2CO3) dissolved in 1 mL of EG. The sample suspensions were then MW 2 

irradiated at 350 W in a domestic microwave (MW) oven (Wavedom, LG, Seoul, South 3 

Korea) for 1.5 min. Dissolved PET was precipitated by the addition of distilled water. 4 

Finally, the obtained mixture was filtered, and the filtrate containing soluble monomers was 5 

analyzed by HPLC. The residual PET samples were dried overnight at 70 °C and kept in 6 

sealed bags for FTIR and DSC analysis. The depolymerization of PET was calculated using 7 

the following Eq. 3: 8 

PET Conversion (%)  =  (1 − 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑃𝑃𝑃𝑃𝑃𝑃
𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃𝑃𝑃

) × 100     (3) 9 

The selectivity of soluble monomers was quantified from the HPLC chromatograms and the 0 

yield of TPA was calculated using Eq. 4: 1 

Yield of TPA (%)  = �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑜𝑜𝑜𝑜 𝑃𝑃𝑃𝑃𝑃𝑃(%) × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇 (%)�
100

      (4) 2 

The TPA monomer was then precipitated by the addition of 2 mL of concentrated HCl (34%, 3 

v/v) to the cooled filtrate. The separated TPA from each sample was washed with water, dried 4 

overnight at 70 °C and characterized by FTIR against TPA commercial standard. 5 

 6 

2.7. Biodegradation of PET materials 7 

2.7.1. B. subtilis BPM12 attachment to PET films 8 

 The attachment of B. subtilis BPM12 to PET films was assessed using the protocol 9 

reported by Ferrero et al. (Ferrero et al., 2022). Briefly, an overnight culture of B. subtilis 0 

BPM12 (0.1%, v/v) was used to inoculate LB medium containing pieces of PET films (rinsed 1 

with EtOH (70%, v/v) and dried under laminar flow). After 7 days of incubation at 30 °C the 2 

films were rinsed with water and stained with crystal violet solution (1 g/L) for 20 min. The 3 
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films were then destained using 30% (v/v) acetic acid and the measured absorbance (Epoch 4 

Microplate Spectrometer, BioTek, Winooski, USA) at 550 nm of the remaining solution was 5 

used as an indicator of cell attachment.  6 

2.7.2. Biodegradation of PET films using whole cells 7 

PET biodegradation experiments were performed in flasks with 25 mL of MSM 8 

medium containing glucose (20 g/L) as a carbon source. PET strips (cut into pieces of 9 

approximately 0.5 cm × 2.5 cm, rinsed with 70% (v/v) EtOH, dried under laminar flow and 0 

weighed) were added to flasks. The flasks were then inoculated with 1% (v/v) overnight 1 

culture of B. subtilis BPM12 (grown in MSM medium) and incubated at 30 °C, 180 rpm 2 

(MaxQ 6000, Thermo Fisher Scientific, Waltham, USA). Appropriate controls, without the 3 

addition of bacterial inoculum were also included. After 4 and 8 weeks, PET strips were 4 

taken out, washed with EtOH (70%, v/v), air dried and weighed and the medium supernatant 5 

was analyzed via HPLC.  6 

2.7.3. Biodegradation of PET films using total protein preparations 7 

Strain BPM12 was grown in LB supplemented with BHET (2 g/L) at 30 °C, 180 rpm 8 

until OD600 reached 5-6. The culture was centrifuged for 10 min at 5000 x g (Eppendorf 9 

centrifuge 5804, Hamburg, Germany) and the supernatant was stored at 4 °C until use. The 0 

cell pellet was resuspended in sodium phosphate buffer (20 mM, pH 7.2) supplemented with 1 

lysozyme, and incubated for 30 min at 37 °C, followed by sonication of 4 pulses of 15 s at 20 2 

kHz (Soniprep 150, MSE (UK) Ltd., London, UK). The suspension was clarified by 3 

centrifugation for 30 min at 20000 x g, 4 °C (Eppendorf Centrifuge 5417 R, Hamburg, 4 

Germany) to obtain the cell-free extract. The total protein mixture was prepared by mixing 5 

cell-free extract and culture supernatant in equal volumes. The protein concentration of 6 

samples was determined using Bicinchoninic Acid Kit for Protein Determination (Sigma 7 
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Aldrich, Hamburg, Germany) and adjusted to 500 µg/mL. Total protein preparations were 8 

stored at -20 °C until use. 9 

Enzymatic biodegradation of recycled PET plastic films was performed in sodium 0 

phosphate buffer (20 mM, pH 7.2) using total protein mixture from strain BPM12. The 1 

experiments were performed in glass flasks, in 7 mL buffer volume, at 30 oC, 180 rpm, for 4 2 

and 8 weeks. Aliquots (1 mL) of total protein preparations were added every week, while 3 

aliquots (1 mL) of tested samples were taken and stored at -20 oC for further HPLC analysis. 4 

The same procedure was applied to controls - PET plastic films in sodium phosphate buffer, 5 

which was also exchanged weekly.  6 

After biodegradation experiments, PET plastic films were washed with EtOH (70%, 7 

v/v), air dried and weighed. All samples were analyzed via SEM analysis as previously 8 

described for characterization of virgin and multiple mechanically recycled PET films. 9 

2.8. Statistical analysis 0 

The results are presented as mean ± standard deviation (SD). Statistical analysis was 1 

done by comparing means using t-test (Two-Sample Assuming Equal Variances) and one-2 

way ANalysis Of VAriance (ANOVA, Single Factor), with Fisher’s Least Significant 3 

Difference (LSD) post-hoc test. The level of statistical significance is expressed as a p-value 4 

(probability value), and p ≤ 0.05 was considered statistically significant. Statistical analysis 5 

tests were performed in Microsoft Excel Spreadsheet Software by Data Analysis Tools add-6 

in.  7 
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3. Results and discussion 8 

3.1. Isolation and identification of Bacillus sp. BPM12 9 

BPM12 is a mesophilic bacterium isolated from the pristine soil sample from the 0 

mountain slope with limited vegetation. During the phenotypic screening, it was 1 

distinguished by its ability to efficiently grow on BHET, PCL and Impranil DL 2077 as a sole 2 

carbon sources, using MSM medium. Clearing halos on BHET plates were observed after 3 

three days of incubation at 30 °C, suggesting BPM12 a potentially useful strain for PET and 4 

other plastics degradation (Fig. 1a). The strain could grow at temperatures from 20 to 47 °C 5 

and at pH values from 6 to 10. It fermented 26 out of the 49 carbohydrates, including simple 6 

sugars such as mannose, fructose, and glucose but also polysaccharides such as starch and 7 

glycogen (Table S2). It was not able to grow on TPA as the sole carbon source. The 16S 8 

rRNA gene sequence placed BPM12 within the Bacillus genus most closely related to B. 9 

subtilis strain BAB-1684 (Accession number: KF535143.1) with 99% sequence identity (Fig. 0 

1b). The strain was named Bacillus sp. BPM12 and the 16S sequence was deposited to 1 

GenBank under the accession number OQ381249. 2 

 3 

Fig. 1. a) Bacillus sp. BPM12 forming clearing zones on MSM agar plate with BHET as the 4 

sole source of carbon and energy after 3 days at 30 °C; b) Maximum likelihood tree showing 5 

the relationship of Bacillus sp. BPM12 to 10 of the most closely related strains. Bootstrap 6 
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values based on 1000 replications are displayed on the nodes of the tree. The scale bar 7 

represents genetic distance. 8 

 9 

BPM12 grew equally well on minimal and nutrient rich solid media within 24 h of 0 

inoculation. It formed creamy-white and orange colonies with smooth irregular edges on 1 

MSM and MSF, respectively. Colonies on LB plates were opaque and circular. The growth of 2 

Bacillus sp. BPM12 was also compared to B. subtilis 168 on different media (Fig. S3a). 3 

Neither strain exhibited hemolytic activity. Fluorescent microscopy revealed BPM12 cells 4 

were rod-shaped with an approximate size of 0.8-1.0 × 5-7 µm which is consistent with 5 

Bacillus spp. morphology (Fig. S3b).  6 

Bacillus is a remarkably diverse bacterial genera, able to grow within ecologically 7 

diverse environments (Earl et al., 2008). Bacillus strains have been investigated for 8 

xenobiotic degradation such as the degradation of pesticides cypermethrin, imidacloprid, 9 

fipronil, and sulfosulfuron reaching degradation rates of up to 99 % (Gangola et al., 2021; 0 

Gangola et al., 2022). Members of the Bacillus genus have been reported to degrade various 1 

plastic polymers including PET (Ribitsch et al., 2011), polyurethanes (Shah et al., 2013) and 2 

polylactic acid (Bonifer et al., 2019) and have been identified in several consortiums capable 3 

of degrading recalcitrant plastics (Roberts et al., 2020; Shah et al., 2016; Skariyachan et al., 4 

2017).  Bacillus sp. BPM12 growth profile at temperatures above 40 °C as well as tolerance 5 

towards alkaline conditions matches that of some previously reported Bacillus strains (Ali et 6 

al., 2016; Hanim, 2017; Wang et al., 2019) and is highly desirable for biotechnological 7 

applications where biocatalysts need to withstand harsh conditions. Another valuable trait of 8 

B. subtilis is the ability to form highly resistant endospores in response to nutrient deprivation 9 

and other environmental stresses, which had already been used for efficient surface display of 0 
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relevant enzymes including PETases (Jia et al., 2022). Therefore, Bacillus sp. BPM12 was 1 

further investigated as a potential biocatalyst for PET degradation. 2 

 3 

3.2. Degradation of PET-related model substrates 4 

Resting whole cells of Bacillus sp. BPM12 were able to hydrolyze BHET, 1MER and 5 

2MER, while 1.5MER and 3MER showed only traces of degradation products, based on 6 

HPLC and TLC analysis (Fig. 2; Fig. S4-S6). During the course of the reaction, 1000 mg/L of 7 

BHET was completely converted to MHET and TPA within 120 h at 30 °C (Fig. 2a). The 8 

ratio of TPA to MHET was 1:6 within this time period. The control reactions showed some 9 

BHET auto-hydrolysis to MHET (≤ 5%, w/w). These results suggest that BHET is firstly 0 

converted to MHET that is subsequently converted to TPA at a considerably slower rate, a 1 

trend also observed among different PET degrading enzymes (Mrigwani et al., 2022). 2 

Bacillus sp. BPM12 is more efficient in BHET conversion when compared to Enterobacter 3 

sp. HY1, which was able to degrade 80.8 % of BHET (1000 mg/L) in 120 h at 30 °C (Qiu et 4 

al., 2020), and comparable to a Yarrowia lipolytica wild-type (Wt) strain which could convert 5 

500 mg/L of BHET in about 48 h at 29 °C (da Costa et al., 2020). However, engineered 6 

strains expressing IsPETase achieve much higher conversion rates, reaching up to 5 g/L and 2 7 

g/L when the enzyme is expressed in Y. lipolytica Po1fP and in B. subtilis, respectively (Qi et 8 

al., 2021). 9 
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 0 

Fig. 2. BHET and 1MER biotransformation using whole cells of Bacillus sp. BPM12 was 1 

monitored via HPLC and TLC. a) BPM12 resting cells transformation of BHET; b) BPM12 2 

resting cells transformation of 1MER of PET. In the HPLC chromatograms, the full lines 3 

represent the control reactions (no biocatalyst), while the dashed lines represent the reactions 4 

containing BPM12 cells. 5 

 6 

1MER of PET was also found to be fully converted to mono-methyl terephthalate 7 

(MTPA), MHET and TPA, suggesting that Bacillus sp. BPM12 can cleave both ester bonds 8 

of 1MER (Fig. 2b). Given that the main product detected was MTPA, when 1MER was used 9 

as a substrate, the preferred cleavage site was at the ethyl moiety. The slow conversion of 0 



Journal Pre-proof

46

46

46

46

46

46

46

46

46

47

47

47

47

47

47

47

47

47

47

48

48

48

48
Jo
ur

na
l P

re
-p

ro
of

21 
 

MHET and MTPA to TPA by Bacillus sp. BPM12 may be due to MHET inhibition as it has 1 

been shown that MHET considerably inhibited the hydrolytic activity of Bs2Est (Kim et al., 2 

2021). 1.5MER and 2MER were converted to MTPA, MHET and TPA confirming both exo- 3 

and endo-cleaving activity of Bacillus sp. BPM12 (Fig. S4 and Fig. S5). 2MER is most likely 4 

firstly converted to MTPA and BHET via endo-cleaving activity and then further broken 5 

down to MHET and TPA via exo-cleaving activity, a mechanism previously shown when 6 

Bs2Est was used as a biocatalyst (Kim et al., 2021). 3MER was found to be much harder to 7 

degrade with only traces of degradation products detected, which can be contributed to the 8 

poor solubility and high hydrophobicity of this substrate (Fig. S6). Similarly, recently 9 

described polyesterase from Moraxella sp. (MoPE) capable of degrading highly crystalline 0 

PET was characterized using the same set of substrates revealing the same mode of action 1 

(Nikolaivits et al., 2022). 2 

 3 

3.3. Bacillus sp. BPM12 genome analysis 4 

The genome assembly consisted of 137 contigs, is 4160070 bp long and is 98.6 % 5 

complete based on BUSCO (Benchmarking Universal Single-Copy Orthologs) analysis. 6 

Strain BPM12 was confirmed to be B. subtilis sp. with the Genome Taxonomy Database 7 

Toolkit. The predicted proteome of BPM12 consists of 4196 proteins and 3406 of them were 8 

clustered in 3301 homologous groups with proteins from the other three Bacillus strains with 9 

reported activity on PET polymer. Almost half of the total BPM12 proteins are core proteins 0 

with homologs in all considered genomes and most BPM12 proteins were clustered with 1 

proteins of the AIIW2 strain with which it shares 78.2 % whole-genome average nucleotide 2 

identity (Fig. 3). 3 
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 4 

Fig. 3. B. subtilis BPM12 proteins clustered in homologous groups with proteins from known 5 

PET-active Bacillus strains (B. albus PFYN01, Bacillus sp. AIIW2, and B. thuringiensis 6 

C15). 7 

 8 

Bacillus sp. AIIW2 is a marine isolate that was found to utilize PET as a carbon 9 

source (Kumari et al., 2021). B. thuringiensis C15 and B. albus PFYN01 are members of a 5 0 

strain consortium that grew synergistically in the presence of PET as the sole carbon source 1 

(Roberts et al., 2020). Both strains tested negative for lipase activity with C15 being unable to 2 

grow on PET in the absence of the rest of the consortium. 3 

The proteome of BPM12 contains 5 enzymes that share high similarity with known 4 

plastic-active enzymes from PAZy (Table 1). These 5 enzymes include three esterases and 5 

two serine proteases. The two serine proteases are core genes with homologs in all considered 6 

genomes. The CE WP_216995529.1 is almost 100 % identical to the intracellular PETase 7 

from B. subtilis strain 4P3-11 that can hydrolyze 3PET and PET films (Ribitsch et al., 2011) 8 

and has no homologs in the other three proteomes. No significant homology was detected 9 

with known MHET-ases such as Mle046 (Meyer-Cifuentes & Öztürk, 2021). The lipase LipA 0 

and the esterase EstB are both secreted and are members of the same InterPro family 1 
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(IPR002918). They form a homologous cluster with an alpha/beta hydrolase from isolate 2 

AIIW2 that lacks a signal peptide. Kumari et. al report a non-secreted CE (accession number: 3 

WP_020451834.1) displaying the highest relative fold change in the presence of PET based 4 

on quantitative reverse transcriptase–polymerase chain reaction analysis (Kumari et al., 5 

2021). This CE clustered with the alpha/beta hydrolase WP_014480039.1 of BPM12. The 6 

two enzymes share 68 % sequence identity and have the same length. 7 

 8 

Table 1. B. subtilis BPM12 proteins and their PAZy homologs. 9 

BPM12 PAZy  Identity % Active on 
carboxylesterase 
(WP_216995529.1) 

PETase 
(ADH43200.1) 98.9 PET 

subtilisin AprE 
(WP_015715621.1) 

subtilisin 
Carlsberg 
(P00780) 

65.2 PLA 

lipase LipA 
(WP_086343408.1) 

PLaA 
(Q83VD0) 48.8 PLA 

esterase EstB 
(WP_003243184.1) 

PLaA 
(Q83VD0) 46.1 PLA 

serine protease Isp 
(WP_029946400.1) 

subtilisin 
Savinase 
(P29599.1) 

45.4 PLA 

 0 

The genome of BPM12 was further searched for enzymes with esterase activity, the 1 

main activity associated with PET degradation but involved in pesticide degradation as well 2 

(Gangola et al. 2018), based on the functional protein domains identified with InterProScan. 3 

This analysis identified 63 esterases with 7 of them being predicted to be secreted. Only one 4 

of the secreted esterases, the phosphodiesterase WP_264240018.1, is a core gene present in 5 

all considered genomes. The GDSL esterase WP_264240216.1 has no homologs in any other 6 

isolate and the remaining 5 secreted esterases, including LipA and estB, have homologs only 7 

in the AIIW2 genome. Recently, pangenomic analysis that included 88 Bacillus species, 8 

revealed many other biodegradation genes involved in plastics and plasticizers degradation 9 

through the Plastic Microbial Biodegradation Database (PMBD) apart from the genes 0 
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implicated in PET degradation (Edwards et al., 2022). An esterase from B. subtilis was 1 

immobilized on halloysite nanotubes and completely degraded dibutyl phthalate (Balci et al., 2 

2023). Furthermore, Bacillus species were also shown to produce a number of valuable 3 

proteases and enzymes involved in metal tolerance and removal (Liya et al., 2023; Sharma et 4 

al., 2022).  5 

 6 

3.4. Expression of BPM12CE 7 

Given the high sequence identity of BPM12CE (Table S3) to a known PETase from 8 

B. subtilis (WP_216995529.1), BPM12CE was selected as the most likely gene responsible 9 

for the PET-related substrate degradation activity. Therefore, the gene was deleted from the 0 

genome of B. subtilis BPM12 to create a knockout mutant. The deletion of Bpm12CE indeed 1 

led to the almost complete loss of BHET degrading activity (Fig. S7a) with only a faint 2 

clearing halo visible, as well as the loss of ability to grow on BHET as the sole carbon source, 3 

corroborating the hypothesis that B. subtilis BPM12 utilizes EG during growth on BHET.  4 

To further investigate its BHET degrading activity bpm12CE gene was cloned into a 5 

Bacillus expression vector and introduced into both B. subtilis BPM12 and 168. The general 6 

esterase activity using pNPB was detected in both strains and in both intracellular and 7 

extracellular protein fractions (Fig. S8). The relative intracellular esterase activity was 8 

generally lower in comparison to extracellular protein fractions (between 1.4- and 5.9-fold) 9 

but remained comparable between the strains. Nevertheless, the extracellular esterase activity 0 

of recombinant strains increased by 1.8- and 3.2- fold in B. subtilis BPM12 and B. subtilis 1 

168, respectively, compared to Wt strains. To get a better insight into specific BHETase 2 

activity, the recombinant strains were tested using BHET as a substrate on plates and in liquid 3 

biotransformation reactions using whole cells (Fig. 4). Initially, B. subtilis 168 did not form 4 

clearing halos on BHET-containing plates while BPM12 did (Fig. 1, Fig. S7b). When 5 
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transformed, both strains exhibited BHET degrading activity, however, recombinant B. 6 

subtilis BPM12 was able to grow better and form larger zones of clearance on MSM agar 7 

containing BHET as a sole carbon source (Fig. 4a). In liquid culture, BHET degradation by 8 

B. subtilis 168 harboring BPM12CE showed a 6-fold increase in comparison to 9 

untransformed B. subtilis 168 (Fig. 4b), clearly demonstrating that BPM12CE was indeed 0 

responsible for BHET conversion. Furthermore, the activity of recombinant B. subtilis 168 1 

was almost identical to that of B. subtilis BPM12 Wt strain. Homologous expression of 2 

BPM12CE in B. subtilis BPM12 led to 1.6- fold increase in the MHET production within the 3 

first 24 h in comparison to the Wt strain (Fig. 4c). 4 

 5 

 6 

Fig. 4. Growth and activity of BPM12 Wt and B. subtilis 168 strains expressing BPM12CE. 7 

a) MSM agar plates with BHET as the sole carbon source after 10h, 24h and 48 h at 30 °C; b) 8 

BHET conversion in liquid culture; b) MHET production in liquid culture after 10 h, 24 h and 9 

48 h incubation. Results were analyzed using ANOVA test and post-hoc Fisher’s LSD test (* 0 

p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001). 1 
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Bacillus is a more favorable expression system in comparison to E. coli due to 2 

intrinsic secretion capacity and better protein folding resulting in a higher yield of more 3 

stable enzymes (Souza et al., 2021; Wei et al., 2019). Four enzymes with PETase activity 4 

have been successfully expressed in Bacillus species so far. T. fusca hydrolase (TfH) was 5 

obtained using B. megaterium with an excellent yield of 240 µg/L at a 2 L scale (Yang et al., 6 

2007). Subsequently, a highly similar enzyme TfCut2 was also obtained from B. subtilis with 7 

higher purity and its activity on PET materials was demonstrated. It was shown that TfCut2 is 8 

more thermostable when expressed in Bacillus compared to E. coli with a 4 °C higher 9 

melting point (Wei et al., 2019). Signal peptide optimization allowed for the enhanced 0 

secretion of IsPETase (Huang et al., 2018; Wang et al., 2020) and BhrPETase (Xi et al., 1 

2021). Given that B. subtilis BPM12 possesses intrinsic activity towards PET-related 2 

substrates it could serve as an ideal platform for the expression of various PETases and other 3 

auxiliary enzymes to increase polymer degrading capacity. 4 

 5 

3.5. Preparation, characterization and chemical recycling of PET materials  6 

Mechanical recycling has been the most common method used to recover PET and 7 

other recyclable plastics because it is relatively easy and economical (Faraca et al., 2019). 8 

Nevertheless, the cleavage of the long polymer chains caused by thermomechanical 9 

degradation is a common problem that affects the properties of mechanically recycled PET 0 

during reprocessing and lifetime (Makkam & Harnnarongchai, 2014). The resulting shorter 1 

polymer chains are expected to be more susceptible to biodegradation, which succeeds 2 

abiotic degradation (Mohanan et al., 2020). 3 

The properties of the virgin and recycled PET materials obtained from the chemical 4 

and thermal analysis are shown in Table 2. Chemical analysis by FTIR accessed possible 5 

chemical changes due to thermomechanical degradation of PET chains over the reprocessing 6 
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cycles (Holland & Hay, 2002). The IR spectra of virgin and recycled PET samples are shown 7 

in the 1900 – 650 cm-1 range (Fig. S9). The band at 1570 cm-1 is related to a conjugated 8 

aromatic structure in the PET samples, while the region from 950 to 750 cm-1 is attributed to 9 

C–H deformation. On one hand, no significant changes in the aforementioned bands were 0 

observed for both R2-PET and R5-PET in comparison to the IR spectrum of V-PET, 1 

suggesting no clear sign of thermal degradation resulting from the extrusion process. 2 

Accordingly, it can be seen from Table 2 that the mechanical recycling process had no 3 

significant impact on the CI for the studied wavenumber that rather decreased slightly from 4 

4.84 in the V-PET to 4.42 and 4.18 in the R2-PET and R5-PET materials, respectively. On the 5 

other hand, there were clear changes in the intensity of the bands at 1470, 1370 and 1340 cm-6 

1 assigned to CH2 bending and wagging modes of trans conformers, which have been 7 

associated with the degree of crystallinity of the PET materials (Sammon et al., 2000). This is 8 

evidenced by a subsequent increase in both the glass transition temperature (Tg) and 9 

crystallinity index calculated from the second heating step of the DSC thermograms of 0 

reprocessed R2-PET and R5-PET materials when compared to the values obtained for V-PET 1 

(Fig. S10). In particular, the role of the crystalline phase in the performance of recycled PET 2 

has been investigated elsewhere (Badia et al., 2012). Therefore, the increase of the 3 

crystallinity index observed herein ranging from 34.99 in the V-PET to 44.48 in the R5-PET 4 

material was attributed to the growth of more crystalline domains promoted by the formation 5 

of shorter polymer fragments that resulted from the cleavage of the polymer backbone, and 6 

possibly act as nuclei upon crystallization. 7 

  8 
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Table 2. Properties of the untreated virgin and recycled PET films and their respective 9 

residues obtained from post MW-assisted depolymerization treatment. 0 

Sample 
Untreated MW-assisted 

treatment 
Tm (°C) a Xc b CI c Tm (°C) a Xc b CI c 

V-PET 246.1 34.9 4.8 246.8 19.5 0.6 

R2-PET 249.0 38.6 4.4 232.3 24.8 3.2 

R5-PET 250.2 44.5 4.2 220.9 11.1 1.4 
a melting temperature; b crystallinity index; c carbonyl index. 1 

 2 

V-PET, R2-PET and R5-PET underwent chemical recycling via MW-assisted 3 

hydrolysis. The residual PET obtained was weighed and the conversion of PET (%) was 4 

calculated. The reaction products dissolved in the cooled filtrate were analyzed by HPLC. 5 

The effects of different PET pretreatment on the conversion of PET, the selectivity of soluble 6 

monomers and the yield of TPA are illustrated in Fig. S11. It was observed that the rate of 7 

conversion was only 75.4% when applying MW-assisted hydrolysis reaction on untreated 8 

virgin PET and then increased to 86.9 and 94.2% when hydrolyzing R2-PET and R5-PET, 9 

respectively. Such a significant increase in depolymerization efficiency with the 0 

mechanically recycled PET at only 1.5 min MW irradiation time could be attributed to the 1 

modifications that took place in the properties of the virgin PET after several cycles of 2 

mechanical recycling. The yield of TPA increased from 36.5% for the virgin PET sample to 3 

38.1% and 56.1% for R2-PET and R5-PET, respectively (Fig. S11). Noticeably, the selectivity 4 

of MHET was much higher than that of BHET for all samples. It was also observed that the 5 

selectivity of BHET and MHET were almost the same for all chemically treated samples 6 

indicating that modifications that occurred by the pretreatment process did not have a 7 

significant effect on the selectivity of depolymerization products obtained post chemical 8 

recycling. Moreover, the residual PET obtained post chemical recycling process for the 9 
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studied PET samples showed a decrease in the crystallinity and carbonyl index from the 0 

original samples as demonstrated in Table 2. The crystallinity index of the obtained residues 1 

ranged between 11 and 25 while the carbonyl index ranged between 0.6 and 3.2. It is also 2 

worth mentioning that the DSC results of the obtained residues post chemical recycling 3 

process, especially R2-PET and R5-PET, have shown a decrease in the melting point 4 

temperatures in comparison to the original samples. This could be attributed to the production 5 

of lower molecular weight PET oligomers after the chemical recycling process exhibiting a 6 

melting endotherm peaking at temperatures lower than that of untreated PET (Chaudhary et 7 

al., 2013). The identity of the TPA white powder monomer precipitated post the MW-assisted 8 

hydrolysis process was confirmed using FTIR analysis (Fig. S12). FTIR spectra of 9 

precipitated TPA from all treated PET samples were almost identical to standard TPA and 0 

TPA reported in the literature (Azeem et al., 2022). 1 

 2 

3.6. Degradation of PET material samples by B. subtilis BPM12 whole-cells and total protein 3 

extracts  4 

As previously reported, biofilm formation is an important factor contributing to the 5 

initiation of plastic degradation (Maheswaran et al., 2023), therefore the ability of B. subtilis 6 

BPM12 to attach to PET films was assessed. B. subtilis BPM12 showed the ability to form 7 

biofilms on both, virgin and recycled PET films (Fig. 5a).  8 
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 9 

Fig. 5. B. subtilis BPM12 attachment on PET materials (a) and biodegradation products (TPA 0 

and MHET) detected after 8 weeks (b) of incubation of PET materials with total protein 1 

preparation at 30 °C. Results were analyzed using ANOVA test and post-hoc Fisher’s LSD 2 

test, p ≤ 0.05 was considered statistically significant.  3 

 4 

The recycling process apparently increased the ability of cell attachment to the films, 5 

possibly due to changes on the surface of the films. However, whole-cell degradation of PET 6 

materials using B. subtilis BPM12 did not lead to any detectable weight changes after 8 7 

weeks of incubation, while weight changes after enzymatic biodegradation of virgin and 8 

recycled PET films are represented in Table S4. Although the weight loss of PET materials 9 
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was minimal and comparable amongst samples, HPLC analysis revealed the release of PET 0 

degradation products, mostly TPA and MHET when cell-free enzymes from this strain were 1 

incubated with materials over this time period (Fig. 5b). Although the initial attachment of 2 

the whole cells was 2-fold higher in the case of re-extruded materials, the yield of 3 

degradation products using enzymes from this strain was comparable for all used materials. 4 

As in the case of PET MW-assisted hydrolysis, material properties after enzymatic treatment 5 

were assessed (Table 3). Indeed, enzymatic treatment did not have a significant effect on the 6 

materials’ Tm or CI. However, the Xc for R5-PET has increased by 40% in comparison to that 7 

of the untreated R5-PET material (Table 2), which further implies that enzymatic activity was 8 

focused on amorphous regions of the material.  9 

 0 

Table 3. Properties of the virgin and recycled PET residues obtained post BPM12 enzymatic 1 

treatment 2 

Sample Tm (°C) a Xc b CI c 

V-PET 246.1 34.9 4.9 

R2-PET 249.0 38.6 4.3 

R5-PET 250.0 62.3 4.2 
a melting temperature; b crystallinity index; c carbonyl index 3 

 4 

These results were further confirmed by SEM analysis of non-treated and 5 

enzymatically treated materials. As presented in Fig. 6, the surface of non-treated virgin PET 6 

is smooth, with few abrasions, while in the case of recycled (re-extruded) PET, multiple 7 

surface plications were detected (Fig. 6a), which explains biofilm formation susceptibility of 8 

these samples (Perera-Costa et al., 2014). Furthermore, a clear difference between treated and 9 

control samples has been observed. Surface modifications in the form of cracks and dents 0 
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could be a result of degradation of the preferred amorphous regions in the materials while 1 

crystalline structures have remained intact.  2 

 3 

Fig. 6. SEM images of V-PET, R2-PET, and R5-PET films before and after the exposure to 4 

BPM12 biodegradation for 8 weeks (1000 × magnification, scale bar = 50 µm). 5 

The preference of PET-degrading enzymes towards amorphous regions has been 6 

discussed in various studies (Kawai et al., 2019; Tournier et al., 2020), however further 7 

analysis is required in order to determine the exact fractions composition of the samples 8 

(rigid amorphous fraction, mobile amorphous fraction, crystallinity degree). Changes on the 9 

surface of examined materials imply that enzymatic treatment has led to materials surface 0 

erosion which is in accordance with the biodegradation product release detected (Fig. 5b).  1 

Additionally, erosion degree appears to correlate with BHET and MHET release. Similar 2 

surface modifications have been previously reported by Chen et al. in a study where the 3 

whole-cell biocatalyst was engineered to improve degradation of highly crystalline PET 4 

materials (crystallinity over 45 %) (Chen et al., 2022). After the exposure of materials to 5 
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BPM12, virgin PET (sample with the lowest crystallinity percentage) has shown the most 6 

significant surface modification correspondingly with the study by Thomsen et al., where it 7 

was shown that PET degradation is directly correlated to crystallinity percentage (Thomsen et 8 

al., 2022). 9 

Taken together, polymeric PET both mechanically recycled and virgin, is not a 0 

suitable substrate for microbial or enzymatic attack for this strain. However, enzymatic 1 

treatment would be suitable as follow up treatment of mild hydrolysis, where there is 2 

oligomeric byproduct of considerable amount generated (25 % in the case of virgin PET 3 

material; Fig. S11). This substrate would be suitable for biocatalytic depolymerization, as it 4 

was shown that crude enzyme preparations from strains that can use BHET as sole source of 5 

carbon and energy can efficiently depolymerase PET oligomers (Fig. 2; Fig. S4-S6). 6 

 7 

4. Practical applications and future research prospects 8 

 Keeping in mind the high volume of newly produced PET materials, it is of high 9 

importance to develop mixed mechano/bio-degradation processes to achieve decreased 0 

carbon footprint and increase the scope of PET recycling beyond high-grade high-purity PET 1 

waste streams. Further research should be directed towards biocatalyst improvement through 2 

enzyme engineering and other optimizations of the biocatalytic process. Namely, the 3 

possibility to drive the degradation to completeness and efficiently recover EG and TPA 4 

produced should be further explored. The research should also be extended with other types 5 

of PET materials, including mixed and postconsumer ones. 6 

 7 

5. Conclusions 8 
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A new B. subtilis BPM12 strain with high BHET degradation activity and the ability 9 

to attach and form biofilms on PET films was described. A novel carboxylesterase, highly 0 

homologous to a previously described intracellular PETase was identified through genome 1 

sequencing and overexpressed in both B. subtilis BPM12 and 168, resulting in increased 2 

BHET-ase activity. It was also demonstrated that B. subtilis BPM12 could serve as an ideal 3 

platform for the expression of PETases and other auxiliary enzymes to increase polymer 4 

degrading capacity. In pursuit of a combined mechano/bio-degradation approach, mixed 5 

mechanical and green chemical hydrolysis recycling was carried out resulting in by-products 6 

containing PET oligomers and other partially degraded products. This treatment resulted in 7 

substrates that are much more suited for biocatalytic treatment and has the potential to be an 8 

important step in achieving more favorable and sustainable routes to advance plastic waste 9 

circularity and upcycling. 0 

 1 

Author contributions statement  2 

Brana Pantelic: Methodology, Validation, Investigation, Writing – original draft, Writing – 3 

review & editing, Jeovan A. Araujo: Methodology, Investigation, Writing – original draft. 4 

Sanja Jeremic: Methodology, Investigation, Writing – original draft. Muhammad Azeem: 5 

Methodology, Investigation, Writing – original draft. Olivia A. Attallah: Methodology, 6 

Investigation, Writing – original draft, Visualization, Romanos Siaperas: Investigation, 7 

Methodology, Writing – original draft. Marija Mojicevic: Conceptualization, Validation, 8 

Writing – review & editing, Margaret Brennan Fournet: Conceptualization, Validation, 9 

Writing – review & editing, Evangelos Topakas: Methodology, Resources, Investigation, 0 

Writing – review & editing, Supervision. Jasmina Nikodinovic-Runic: Conceptualization, 1 

Methodology, Validation, Resources, Writing – review & editing, Supervision, Funding 2 

acquisition. All authors read and approved the final manuscript.  3 



Journal Pre-proof

74

74

74

74

74

74

75

75

75

75

75

75

75

75

75

75

76

76

76

76

76

76

76

76

76
 Jo
ur

na
l P

re
-p

ro
of

35 
 

 4 

Declaration of competing interest  5 

The authors declare that they have no known competing financial interests or personal 6 

relationships that could have appeared to influence the work reported in this paper.  7 

 8 

Funding  9 

This work was supported by the European Union’s Horizon 2020 Research and Innovation 0 

Programme under grant agreement No. 870292 (BioICEP) and by the National Natural 1 

Science Foundation of China (Nos. 31961133016, 31961133015, and 31961133014). 2 

 3 

Appendix A. Supplementary data 4 

PET-related model substrates used to investigate the biocatalytic potential of B. subtilis 5 

BPM12 (Fig. S1); Illustration of the mechanical recycling process using a twin-screw 6 

extruder for the fabrication and reprocessing of PET films (Fig. S2). Growth of B. subtilis 7 

BPM12 compared to B. subtilis 168 on LA, MSF, and MSM and blood agar plates (a) and 8 

fluorescent microscopy of B. subtilis BPM12 under 100 000 x magnification (b). 1.5MER, 9 

2MER and 3MER biotransformation using whole cells of B. subtilis BPM12 was monitored 0 

via HPLC and TLC (Fig. S4-S6). Growth of B. subtilis BPM12 and the knockout mutant B. 1 

subtilis BPM12 Δbpm12CE on MSM plates containing BHET as the sole carbon source b) 2 

Growth of B. subtilis 168 on MSM plates containing BHET as the sole carbon source; c) 3 

Growth of recombinant Bacillus strains transformed with BPM12CE on MSM plates 4 

containing BHET as the sole carbon source 5 g/L (Fig. S7). General esterase activity of 5 

intracellular and extracellular enzyme fractions of recombinant and Wt B. subtilis BPM12 6 

and B. subtilis 168 (all values are standardized based on protein concentration) (Fig. S8). 7 

FTIR spectra of the V-PET, and the reprocessed R2-PET and R5-PET materials are shown in 8 
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the wavenumber range 1900–650 cm-1 (Fig. S9). DSC thermograms of the second heating 9 

step of V-PET, R2-PET, and R5-PET from 30 °C to 275 °C (10 °C/min) under nitrogen 0 

atmosphere (30 mL/min) (Fig. S10). The effect of re-extrusion process on the conversion of 1 

PET to BHET, MHET and the yield of TPA via MW-assisted hydrolysis using Na2CO3 in 2 

ethylene glycol (Fig. S11). FTIR spectra of [a] TPA standard, [b] TPA obtained from V-PET 3 

depolymerization, [c] TPA obtained from R2-PET depolymerization and [d] TPA obtained 4 

from R5-PET depolymerization (Fig. S12). Primers used for bpm12CE cloning and 5 

construction of the knockout mutant B. subtilis BPM12 Δbpm12CE (Table S1). The ability of 6 

B. subtilis BPM12 to metabolize different carbohydrates (Table S2). Nucleotide and amino 7 

acid sequence of BPM12CE (Table S3). Weight changes after enzymatic degradation of PET 8 

films (Table S4).  9 
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Bacillus subtilis BPM12 with an excellent BHET degradation potential is reported

The interaction of BPM12 with virgin and re-extruded PET films examined

Carboxylesterase BPM12CE was identified through genome analysis and expressed

Mechanical recycling resulted in PET materials that are more susceptible to chemical hydrolysis
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