11 research outputs found

    Evidence from the Vredefort Granophyre Dikes points to crustal relaxation following basin-size impact cratering

    Get PDF
    The timescale of the modification stage of basin-sized impact structures is not well understood. Owing to ca. 10 km of erosion since its formation, the Vredefort impact structure, South Africa, is an ideal testing ground for deciphering post-impact modification. Here, we present geophysical and geochemical evidence from the Vre defort Granophyre Dikes, which were derived from the - now eroded - Vredefort impact melt sheet. The dikes have been studied mostly in terms of their composition, while the timing and duration of their emplacement remain controversial. We examined the modern depth extent of five dikes, with three from the inner crystalline core of the central uplift, and two from the boundary between the core and the supracrustal collar of the central uplift, using two-dimensional electrical resistivity tomography. We found that the core dikes terminate near the present erosion surface (i.e., <5 m depth). In contrast, the dikes at the core-collar boundary extend to a depth ≥ 9 m. These observations suggest that the core dikes are exposed near their lowermost terminus. In addition, we obtained bulk geochemical composition of the dikes, finding that the andesitic composition phase is present in the core-collar dikes that is not found in the core dikes. The presence of this phase indicates the episodic emplacement of impact melt into subvertical crater floor fractures. We conclude that the dike formation was protracted and occurred over a time span of at least 104 years. The sequential formation of the Vredefort Granophyre Dikes points to horizontal extension of crust below the impact melt sheet above a kinematic velocity discontinuity, a crustal instability resulting from the dynamic collapse oNational Research Foundation Deutsche Forschungsgemeinschaft Universiteit van die Vrystaa

    Post-impact faulting of the holfontein granophyre dike of the vredefort impact structure, south africa, inferred from remote sensing, geophysics, and geochemistry

    Get PDF
    Better characterization features borne from long-term crustal modification processes is essential for understanding the dynamics of large basin-forming impact structures on Earth. Within the deeply eroded 2.02 Ga Vredefort Impact Structure in South Africa, impact melt dikes are exposed at the surface. In this study, we utilized a combination of field, remote sensing, electrical resistivity, magnetic, petrographical, and geochemical techniques to characterize one such impact melt dike, namely, the Holfontein Granophyre Dike (HGD), along with the host granites. The HGD is split into two seemingly disconnected segments. Geophysical modeling of both segments sug-gests that the melt rock does not penetrate below the modern surface deeper than 5 m, which was confirmed by a later transecting construction trench. Even though the textures and clast content are different in two segments, the major element, trace element, and O isotope compositions of each segment are indistinguishable

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≥ II, EF ≤35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure &lt; 100 mmHg (n = 1127), estimated glomerular filtration rate &lt; 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    IMA Genome-F 11: Draft genome sequences of Fusarium xylarioides, Teratosphaeria gauchensis and T. zuluensis and genome annotation for Ceratocystis fimbriata

    Get PDF
    CITATION: Wingfield, B. D., et al. 2019. IMA Genome-F 11 : Draft genome sequences of Fusarium xylarioides, Teratosphaeria gauchensis and T. zuluensis and genome annotation for Ceratocystis fimbriata. IMA Fungus, 10:13, doi:10.1186/s43008-019-0013-7.The original publication is available at https://imafungus.biomedcentral.com/articles/10.1186/s43008-019-0013-7ENGLISH ABSTRACT: Draft genomes of the fungal species Fusarium xylarioides, Teratosphaeria gauchensis and T. zuluensis are presented. In addition an annotation of the genome of Ceratocystis fimbriata is presented. Overall these genomes provide a valuable resource for understanding the molecular processes underlying pathogenicity and potential management strategies of these economically important fungi.https://imafungus.biomedcentral.com/articles/10.1186/s43008-019-0013-7Publisher's versio

    8th IAS Conference on HIV Pathogenesis, Treatment and Prevention (IAS 2015).

    No full text

    Cardiac myosin activation with omecamtiv mecarbil in systolic heart failure

    No full text
    BACKGROUND The selective cardiac myosin activator omecamtiv mecarbil has been shown to improve cardiac function in patients with heart failure with a reduced ejection fraction. Its effect on cardiovascular outcomes is unknown. METHODS We randomly assigned 8256 patients (inpatients and outpatients) with symptomatic chronic heart failure and an ejection fraction of 35% or less to receive omecamtiv mecarbil (using pharmacokinetic-guided doses of 25 mg, 37.5 mg, or 50 mg twice daily) or placebo, in addition to standard heart-failure therapy. The primary outcome was a composite of a first heart-failure event (hospitalization or urgent visit for heart failure) or death from cardiovascular causes. RESULTS During a median of 21.8 months, a primary-outcome event occurred in 1523 of 4120 patients (37.0%) in the omecamtiv mecarbil group and in 1607 of 4112 patients (39.1%) in the placebo group (hazard ratio, 0.92; 95% confidence interval [CI], 0.86 to 0.99; P = 0.03). A total of 808 patients (19.6%) and 798 patients (19.4%), respectively, died from cardiovascular causes (hazard ratio, 1.01; 95% CI, 0.92 to 1.11). There was no significant difference between groups in the change from baseline on the Kansas City Cardiomyopathy Questionnaire total symptom score. At week 24, the change from baseline for the median N-terminal pro-B-type natriuretic peptide level was 10% lower in the omecamtiv mecarbil group than in the placebo group; the median cardiac troponin I level was 4 ng per liter higher. The frequency of cardiac ischemic and ventricular arrhythmia events was similar in the two groups. CONCLUSIONS Among patients with heart failure and a reduced ejection, those who received omecamtiv mecarbil had a lower incidence of a composite of a heart-failure event or death from cardiovascular causes than those who received placebo. (Funded by Amgen and others; GALACTIC-HF ClinicalTrials.gov number, NCT02929329; EudraCT number, 2016 -002299-28.)
    corecore