5 research outputs found

    Simian immunodeficiency virus infection in wild-caught chimpanzees from Cameroon

    Get PDF
    Simian immunodeficiency viruses (SIVcpz) infecting chimpanzees (Pan troglodytes) in west central Africa are the closest relatives to all major variants of human immunodeficiency virus type 1 ([HIV-1]; groups M, N and O), and have thus been implicated as the source of the human infections; however, information concerning the prevalence, geographic distribution, and subspecies association of SIVcpz still remains limited. In this study, we tested 71 wild-caught chimpanzees from Cameroon for evidence of SIVcpz infection. Thirty-nine of these were of the central subspecies (Pan troglodytes troglodytes), and 32 were of the Nigerian subspecies (Pan troglodytes vellerosus), as determined by mitochondrial DNA analysis. Serological analysis determined that one P. t. troglodytes ape (CAM13) harbored serum antibodies that cross-reacted strongly with HIV-1 antigens; all other apes were seronegative. To characterize the newly identified virus, 14 partially overlapping viral fragments were amplified from fecal virion RNA and concatenated to yield a complete SIVcpz genome (9,284 bp). Phylogenetic analyses revealed that SIVcpzCAM13 fell well within the radiation of the SIVcpzPtt group of viruses, as part of a clade including all other SIVcpzPtt strains as well as HIV-1 groups M and N. However, SIVcpzCAM13 clustered most closely with SIVcpzGAB1 from Gabon rather than with SIVcpzCAM3 and SIVcpzCAM5 from Cameroon, indicating the existence of divergent SIVcpzPtt lineages within the same geographic region. These data, together with evidence of recombination among ancestral SIVcpzPtt lineages, indicate long-standing endemic infection of central chimpanzees and reaffirm a west central African origin of HIV-1. Whether P. t. vellerosus apes are naturally infected with SIVcpz requires further study

    Low Immune Response to Hepatitis B Vaccine among Children in Dakar, Senegal

    Get PDF
    HBV vaccine was introduced into the Expanded Programme on Immunization (EPI) in Senegal and Cameroon in 2005. We conducted a cross-sectional study in both countries to assess the HBV immune protection among children. All consecutive children under 4 years old, hospitalized for any reason between May 2009 and May 2010, with an immunisation card and a complete HBV vaccination, were tested for anti-HBs and anti-HBc. A total of 242 anti-HBc-negative children (128 in Cameroon and 114 in Senegal) were considered in the analysis. The prevalence of children with anti-HBs ≥10 IU/L was higher in Cameroon with 92% (95% CI: 87%–97%) compared to Senegal with 58% (95% CI: 49%–67%), (p<0.001). The response to vaccination in Senegal was lower in 2006–2007 (43%) than in 2008–2009 (65%), (p = 0.028). Our results, although not based on a representative sample of Senegalese or Cameroonian child populations, reveal a significant problem in vaccine response in Senegal. This response problem extends well beyond hepatitis B: the same children who have not developed an immune response to the HBV vaccine are also at risk for diphtheria, tetanus, pertussis (DTwP) and Haemophilus influenzae type b (Hib). Field biological monitoring should be carried out regularly in resource-poor countries to check quality of the vaccine administered

    Characterization of a new simian immunodeficiency virus strain in a naturally infected Pan troglodytes troglodytes chimpanzee with AIDS related symptoms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Data on the evolution of natural SIV infection in chimpanzees (SIVcpz) and on the impact of SIV on local ape populations are only available for Eastern African chimpanzee subspecies (<it>Pan troglodytes schweinfurthii</it>), and no data exist for Central chimpanzees (<it>Pan troglodytes troglodytes</it>), the natural reservoir of the ancestors of HIV-1 in humans. Here, we report a case of naturally-acquired SIVcpz infection in a <it>P.t.troglodytes </it>chimpanzee with clinical and biological data and analysis of viral evolution over the course of infection.</p> <p>Results</p> <p>A male chimpanzee (Cam155), 1.5 years, was seized in southern Cameroon in November 2003 and screened SIV positive during quarantine. Clinical follow-up and biological analyses have been performed for 7 years and showed a significant decline of CD4 counts (1,380 cells/mm<sup>3 </sup>in 2004 vs 287 in 2009), a severe thrombocytopenia (130,000 cells/mm<sup>3 </sup>in 2004 vs 5,000 cells/mm<sup>3 </sup>in 2009), a weight loss of 21.8% from August 2009 to January 2010 (16 to 12.5 kg) and frequent periods of infections with diverse pathogens.</p> <p>DNA from PBMC, leftover from clinical follow-up samples collected in 2004 and 2009, was used to amplify overlapping fragments and sequence two full-length SIVcpz<it>Ptt</it>-Cam155 genomes. SIVcpz<it>Ptt</it>-Cam155 was phylogenetically related to other SIVcpz<it>Ptt </it>from Cameroon (SIVcpz<it>Ptt</it>-Cam13) and Gabon (SIVcpz<it>Ptt</it>-Gab1). Ten molecular clones 5 years apart, spanning the V1V4 gp120 <it>env </it>region (1,100 bp), were obtained. Analyses of the <it>env </it>region showed positive selection (dN-dS >0), intra-host length variation and extensive amino acid diversity between clones, greater in 2009. Over 5 years, N-glycosylation site frequency significantly increased (p < 0.0001).</p> <p>Conclusions</p> <p>Here, we describe for the first time the clinical history and viral evolution of a naturally SIV infected <it>P.t.troglodytes </it>chimpanzee. The findings show an increasing viral diversity over time and suggest clinical progression to an AIDS-like disease, showing that SIVcpz can be pathogenic in its host, as previously described in <it>P.t.schweinfurthii</it>. Although studying the impact of SIV infection in wild apes is difficult, efforts should be made to better characterize the pathogenicity of the ancestors of HIV-1 in their natural host and to find out whether SIV infection also plays a role in ape population decline.</p
    corecore