73 research outputs found
Trapping efficiency of plastic bottle "wickertraps" for population assessment of river Macrobrachium (Crustacea : Decapoda)
Small wickertraps made from plastic bottles are used to sample #Macrobrachium communities (#Crustacea Decapoda) in the rivers of Nuku-Hiva (Marquesas Islands, French Polynesia). Relations are established between sampling effort (number of traps per m2), number of crustacea caught, and surface of the pool. Catch per trap decreased with increasing trap density up to a threshold of about 8 traps per m2. Escape measurements, in a river and in the laboratory, help to describe the behaviour of the shrimps towards the traps. Escape was greater at night than during the day. The number of shrimps entering the traps was inversely proportional to the number of shrimps already in the traps. Sampling efficiency of the traps was estimated, in a single trial, at 40-47% for a trap density of 8.3 traps per m2. (Résumé d'auteur
Competition and facilitation between the marine nitrogen-fixing <i>cyanobacterium</i> Cyanothece and its associated bacterial community
N2-fixing cyanobacteria represent a major source of new nitrogen and carbon for marine microbial communities, but little is known about their ecological interactions with associated microbiota. In this study we investigated the interactions between the unicellular N2-fixing cyanobacterium Cyanothece sp. Miami BG043511 and its associated free-living chemotrophic bacteria at different concentrations of nitrate and dissolved organic carbon and different temperatures. High temperature strongly stimulated the growth of Cyanothece, but had less effect on the growth and community composition of the chemotrophic bacteria. Conversely, nitrate and carbon addition did not significantly increase the abundance of Cyanothece, but strongly affected the abundance and species composition of the associated chemotrophic bacteria. In nitrate-free medium the associated bacterial community was co-dominated by the putative diazotroph Mesorhizobium and the putative aerobic anoxygenic phototroph Erythrobacter and after addition of organic carbon also by the Flavobacterium Muricauda. Addition of nitrate shifted the composition toward co-dominance by Erythrobacter and the Gammaproteobacterium Marinobacter. Our results indicate that Cyanothece modified the species composition of its associated bacteria through a combination of competition and facilitation. Furthermore, within the bacterial community, niche differentiation appeared to play an important role, contributing to the coexistence of a variety of different functional groups. An important implication of these findings is that changes in nitrogen and carbon availability due to, e.g., eutrophication and climate change are likely to have a major impact on the species composition of the bacterial community associated with N2-fixing cyanobacteria
Assessment of bacterial dependence on marine primary production along a northern latitudinal gradient
Recent observations in polar marine waters have shown that a large fraction of primary production may be lost to respiration by planktonic bacteria due to very low bacterial growth efficiencies in cold waters. Here we report that sea temperature may be a key factor influencing the interaction between bacteria and primary production in North Atlantic and Arctic waters, suggesting that low primary production rates could not sustain bacterial carbon demand in the coldest Arctic waters. The use of freshly produced phytoplankton exudate by bacteria in early- and mid-summer was assessed, together with the bacterial uptake of dissolved inorganic nitrogen (DIN = nitrate and ammonium), in surface waters along a latitudinal gradient from the North Sea to the Arctic sea ice. Bacterial production was independent of the low primary production measured in the coldest waters. Under these conditions, heterotrophic bacteria can consume a large fraction of DIN and N-rich organic matter, making them strong contributors to N fluxes in these waters
The processing and impact of dissolved riverine nitrogen in the Arctic Ocean
© The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Estuaries and Coasts 35 (2012): 401-415, doi:10.1007/s12237-011-9417-3.Although the Arctic Ocean is the most riverine-influenced of all of the world’s oceans, the importance of terrigenous nutrients in this environment is poorly understood. This study couples estimates of circumpolar riverine nutrient fluxes from the PARTNERS (Pan-Arctic River Transport of Nutrients, Organic Matter, and Suspended Sediments) Project with a regionally configured version of the MIT general circulation model to develop estimates of the distribution and availability of dissolved riverine N in the Arctic Ocean, assess its importance for primary production, and compare these estimates to potential bacterial production fueled by riverine C. Because riverine dissolved organic nitrogen is remineralized slowly, riverine N is available for uptake well into the open ocean. Despite this, we estimate that even when recycling is considered, riverine N may support 0.5–1.5 Tmol C year−1 of primary production, a small proportion of total Arctic Ocean photosynthesis. Rapid uptake of dissolved inorganic nitrogen coupled with relatively high rates of dissolved organic nitrogen regeneration in N-limited nearshore regions, however, leads to potential localized rates of riverine-supported photosynthesis that represent a substantial proportion of nearshore production.Funding for this work was provided through NSFOPP-
0229302 and NSF-OPP-0732985.Support to SET was additionally
provided by an NSERC Postdoctoral Fellowship
Evaluation of antibiotics as a methodological procedure to inhibit free-living and biofilm bacteria in marine zooplankton culture
There is a problem with keeping culture medium completely or partially free from bacteria. The use of prokaryotic metabolic inhibitors, such as antibiotics, is suggested as an alternative solution, although such substances should not harm non-target organisms. Thus, the aim of this study was to assess the effectiveness of antibiotic treatments in inhibiting free-living and biofilm bacteria and their half-life in artificial marine environment using the copepod Acartia tonsa as bioindicador of non-harmful antibiotic combinations. Regarding to results, the application of 0.025 g L-1 penicillin G potassium + 0.08 g L-1 streptomycin sulphate + 0.04 g L-1 neomycin sulphate showed great potential for use in marine cultures and scientific experiments without lethal effects to non-target organisms. The effect of this combination starts within the first six hours of exposure and reduces up to 93 % the bacterial density, but the half-life is short, requiring replacement. No adverse changes in water quality were observed within 168 hours of exposure. As a conclusion, we can infer that this treatment was an effective procedure for zooplankton cultures and scientific experiments with the aim of measuring the role of free-living and biofilm in the marine community
Size-fractionated Carboxylase Activities During a 32 h Cycle at 30 m Depth in the North-western Mediterranean Sea After an Episodic Wind Event
Size-fractionated phytoplankton carboxylase activities in the Indian sector of the Southern Ocean
Size-fractionated Carboxylase Activities During a 32 h Cycle at 30 m Depth in the North-western Mediterranean Sea After an Episodic Wind Event
About frame estimation of growth functions and robust prediction in bioprocess modeling
We address the problem of determining functional framing of experimental data points in view of robust time-varying predictions, which is of crucial importance in bioprocess monitoring. We propose a method that provides guaranteed functional bounds, instead of sets of parameters values for growth functions such as the classical Monod or Haldane functions commonly used in bioprocess modeling. We illustrate the applicability of the method with bioreactor simulations in batch and continuous mode. We also present two extensions of the method adding exibility in its application, and discuss its eciency in providing guaranteed state estimations
About frame estimation of growth functions and robust prediction in bioprocess modeling
We address the problem of determining functional framing of experimental data points in view of robust time-varying predictions, which is of crucial importance in bioprocess monitoring. We propose a method that provides guaranteed functional bounds, instead of sets of parameters values for growth functions such as the classical Monod or Haldane functions commonly used in bioprocess modeling. We illustrate the applicability of the method with bioreactor simulations in batch and continuous mode. We also present two extensions of the method adding exibility in its application, and discuss its eciency in providing guaranteed state estimations
- …
