4 research outputs found

    Transfer of moisture through the unsaturated zone in the tropical forest using the neutron probe

    No full text
    Knowledge of moisture content is crucial in assessing spatial and temporal movement of water through the unsaturated zone. Moisture storage is also important for monitoring the soil water balance and for validation of water balance models. The purpose of this work was to determine and analyse moisture content profiles at point locations in the unsaturated zone of a lateritic soil around Nsimi, south of Cameroon. Neutron probe has been connected to a set of tensiometers in an area of 60 ha. A comparative study between a site covered with vegetation and a site uncovered was conducted to assess the influence of vegetation in the process of moisture transfers. The results showed that the spatial distribution of moisture profiles varied according to the site and the texture of the soil, with in general increasing of moisture from the surface horizon toward the deeper layers. The mean values of moisture varied from θm= 0,397 cm3/cm3 on barren site, against θm= 0,429 cm3/cm3 in vegetation. Values of suction were generally strong in surface and at depth, but weak in the intermediate layers

    Origin of silica in rice plants and contribution of diatom Earth fertilization : insights from isotopic Si mass balance in a paddy field

    No full text
    International audienceBackground and aims: The benefits of Si for crops is well evidenced but the biogeochemical cycle of Si in agriculture remains poorly documented. This study aims at identifying and quantifying the Si sources (primary and secondary soil minerals, amorphous silica, irrigation, Si-fertilizer) to rice plants.Method: Field experiments were carried out with and without application of diatomaceous earth (DE) under rice and bare conditions to determine the water and dissolved mass balance in paddy fields (Karnataka, Southern India). The fate of the Si brought by irrigation (DSi) (uptake by rice, uptake by diatoms, adsorption) was assessed through a solute mass balance combined with silicon isotopic signatures.Results: Above the ground-surface, about one third of the DSi flux brought by borewell irrigation (545 mmol Si.m−2) to bare plots and half of DSi in rice plots were removed from solution within minutes or hours following irrigation. Such rate is consistent with the rate of DSi adsorption onto Fe-oxyhydroxides but not with diatom blooms. In rice and rice + DE experiments, the isotopic fractionation factor (30ε) between bore well and stagnant water compositions is close to −1 ‰, i.e. the isotopic fractionation factor known for rice, indicating that above-ground DSi removal would be dominated by plant uptake upon adsorption. Within the soil layer, pore water DSi decreases much faster in rice experiments than in bare ones, demonstrating the efficiency of DSi rice uptake upon adsorption. Total irrigation-DSi to plant-Si would then represent 24 to 36% in rice experiments (over 1460 ± 270 mmol Si m−2 in biomass) and 15 to 23% in rice + DE ones (over 2250 ± 180 mmol Si m−2). The δ30Si signature of whole plants was significantly different in the rice + DE plot analyzed, 0.99 ± 0.07 ‰, than in the rice one, 1.29 ± 0.07 ‰. According to these δ30Si signatures, the main Si source from the soil would be the amorphous silica pool (ASi). A slight contribution of DE to the rice plant could be detected from the Si isotopic signature of rice.Conclusions: The δ30Si signatures of the various soil-plant compartments, when associated to Si mass balance at soil-plant scale, constitute a reliable proxy of the Si sources in paddy fields. The solute Si balance is controlled by rice uptake in rice plots and by adsorption in bare ones. The main Si sources for the rice plants were soil ASi, irrigation Si and to a lesser extent Si fertilizer when it was applied
    corecore