31 research outputs found
Recommended from our members
Supporting data on combined transcriptomic and phosphoproteomic analysis of BMP4 signaling in human embryonic stem cells.
Human embryonic stem cells exhibit great potential as a therapeutic tool in regenerative medicine due to their self-renewal and trilineage differentiation capacity. Maintaining this unique cellular state has been shown to rely primarily on the Activin A / TGFβ signaling pathway. While most conventional culture media are supplemented with TGFβ, in the current study we utilize a modified version of the commercially available mTeSR1, substituting TGFβ for Activin A in order to preserve pluripotency. (1) Cells cultured in ActA-mTesR express pluripotency factors NANOG, OCT4 and SOX2 at comparable levels with cells cultured in TGFβ-mTeSR. (2) ActA-mTeSR cultured cells retain a physiological karyotype. (3) Cells in ActA-mTeSR maintain their trilineage differentiation capacity as shown in the teratoma formation assay. This system can be used to dissect the role of Activin A, downstream effectors and signaling cascades in human embryonic stem cell responses
Generation of stem cell-based bioartificial anterior cruciate ligament (ACL) grafts for effective ACL rupture repair
AbstractIn the present study, we combined stem cell technology with a non-absorbable biomaterial for the reconstruction of the ruptured ACL. Towards this purpose, multipotential stromal cells derived either from subcutaneous human adipose tissue (hAT-MSCs) or from induced pluripotent stem cells (iPSCs) generated from human foreskin fibroblasts (hiPSC-MSCs) were cultured on the biomaterial for 21days in vitro to generate a 3D bioartifical ACL graft. Stem cell differentiation towards bone and ligament at the ends and central part of the biomaterial was selectively induced using either BMP-2/FGF-2 or TGF-β/FGF-2 combinations, respectively. The bioartificial ACL graft was subsequently implanted in a swine ACL rupture model in place of the surgically removed normal ACL. Four months post-implantation, the tissue engineered ACL graft generated an ACL-like tissue exhibiting morphological and biochemical characteristics resembling those of normal ACL
The isoflavone metabolite 6-methoxyequol inhibits angiogenesis and suppresses tumor growth
WOS:000307348200001Peer reviewe
Angiogenesis in cancer of unknown primary: clinicopathological study of CD34, VEGF and TSP-1
BACKGROUND: Cancer of unknown primary remains a mallignancy of elusive biology and grim prognosis that lacks effective therapeutic options. We investigated angiogenesis in cancer of unknown primary to expand our knowledge on the biology of these tumors and identify potential therapeutic targets. METHODS: Paraffin embedded archival material from 81 patients diagnosed with CUP was used. Tumor histology was adenocarcinoma (77%), undifferentiated carcinoma (18%) and squamous cell carcinoma (5%). The tissue expression of CD34, VEGF and TSP-1 was assessed immunohistochemically by use of specific monoclonal antibodies and was analyzed against clinicopathological data. RESULTS: VEGF expression was detected in all cases and was strong in 83%. Stromal expression of TSP-1 was seen in 80% of cases and was strong in 20%. The expression of both proteins was not associated with any clinical or pathological parameters. Tumor MVD was higher in tumors classified as unfavorable compared to more favorable and was positively associated with VEGF and negatively with TSP-1. CONCLUSION: Angiogenesis is very active and expression of VEGF is almost universal in cancers of unknown primary. These findings support the clinical investigation of VEGF targeted therapy in this clinical setting
Generation of human induced pluripotent stem cells in defined, feeder-free conditions
Herein, we describe a modified protocol for the generation of human induced pluripotent stem cells (hiPS) and expansion under defined, serum free and feeder free conditions. These cells exhibit a high level of plasticity towards various differentiation pathways both in vitro and in vivo. Ultimately, hiPS-derived lines achieved high standards of three dimensional differentiations on biomaterial scaffolds and promoted in vivo regeneration of complex organs, such as Anterior Cruciate Ligament (in swine ACL-rupture models) and other tissues as well