4 research outputs found

    Molecular modeling of the atmospheric aerosols reactivity

    No full text
    Cette thĂšse constitue une contribution Ă  la modĂ©lisation Ă  l’échelle molĂ©culaire de la rĂ©activitĂ© des aĂ©rosols atmosphĂ©riques. L’objectif est de mettre au point une mĂ©thodologie hybride classique/quantique permettant de traiter la rĂ©activitĂ© hĂ©tĂ©rogĂšne Ă  la surface des aĂ©rosols atmosphĂ©riques attaquĂ©s par diverses espĂšces rĂ©actives de nature radicalaire (Cl, OH ou peroxyles RO2) ou saturĂ©e (dioxygĂšne, ozone). Tout d’abord, l’approche quantique de la rĂ©activitĂ© entre le chlore et les molĂ©cules d’acide carboxyliques (acide valĂ©rique) ou acides gras (acide palmitique) a Ă©tĂ© validĂ©e en phase gaz. Les rĂ©sultats ont permis, d’une part, de mettre en Ă©vidence la spontanĂ©itĂ© de l’abstraction des atomes d’hydrogĂšne de l’acide par le chlore et d’autre part l’augmentation de la constante de vitesse de rĂ©action lorsque la chaĂźne de la molĂ©cule d’acide s’allonge. Dans la deuxiĂšme partie dĂ©diĂ©e Ă  la simulation d’un aĂ©rosol modĂšle, nous avons, Ă  partir de la dynamique molĂ©culaire classique, construit un agrĂ©gat d’acide palmitique et analysĂ© ses propriĂ©tĂ©s structurales et Ă©nergĂ©tiques. Ensuite, en ajoutant des molĂ©cules d’eau, on constate que celles-ci forment des Ăźlots Ă  la surface de l’agrĂ©gat. Enfin, nous avons Ă©tudiĂ© la rĂ©activitĂ© hĂ©tĂ©rogĂšne Ă  la surface de l’aĂ©rosol en dĂ©coupant le systĂšme en deux rĂ©gions traitĂ©es de maniĂšre diffĂ©renciĂ©e (approche dite "QM/MM", " Quantum Mechanics/Molecular Mechanics"). Nous avons identifiĂ© un Ă©chantillon d’atomes hydrogĂšne Ă  la surface de l’agrĂ©gat pouvant ĂȘtre captĂ© par le Chlore et calculĂ© pour chacun d’eux la constante de rĂ©action. Nous avons finalement pu dĂ©terminer pour la premiĂšre fois une valeur thĂ©orique du coefficient de capture (" uptake") rĂ©actif, qui peut ĂȘtre comparĂ©e aux rĂ©sultats expĂ©rimentaux.This thesis contributes to the molecular level understanding of atmospheric aerosol chemistry. The objective is to set up an hybrid classical/quantum methodology to treat the heterogeneous chemical mechanisms occurring at the surface of model aerosols attacked by various reactive species, either radicals (Cl, OH or RO2 peroxyl) or saturated (oxygen, ozone). Firstly, the quantum approach used to treat the reactivity between chlorine and a carboxylic acid molecule (valeric acid) or fatty acid (palmitic acid) has been validated in the gas phase. These calculations made it possible, on the one hand, to highlight the spontaneity of the abstraction of the hydrogen atoms of the acid by the chlorine radical and, on the other hand, the increase of the reaction rate constant as the chain of the acid molecule gets longer. In the second part dedicated to the simulation of a model submicrometer aerosol, we have built an aggregate of palmitic acid using classical molecular dynamics and analysed its structural and energetic properties. Then, addition of water molecules leads to the formation of water islands at the surface of the aggregate. Finally, we studied the heterogeneous reactivity at the surface of the aerosol by dividing the system into two regions treated differently (QM/MM approach, Quantum Mechanics/Molecular Mechanics). We have identified a sample of hydrogen atoms at the surface of the aggregate that can be captured by chlorine and calculated for each of them the reaction rate constant within the QM/MM scheme. We have finally been able to determine for the first time a theoretical value of the reactive uptake coefficient, which can be in principle compared to experimental data
    corecore