667 research outputs found

    SV-map between Type I and Heterotic Sigma Models

    Full text link
    The scattering amplitudes of gauge bosons in heterotic and open superstring theories are related by the single-valued projection which yields heterotic amplitudes by selecting a subset of multiple zeta value coefficients in the αâ€Č\alpha' (string tension parameter) expansion of open string amplitudes. In the present work, we argue that this relation holds also at the level of low-energy expansions (or individual Feynman diagrams) of the respective effective actions, by investigating the beta functions of two-dimensional sigma models describing world-sheets of open and heterotic strings. We analyze the sigma model Feynman diagrams generating identical effective action terms in both theories and show that the heterotic coefficients are given by the single-valued projection of the open ones. The single-valued projection appears as a result of summing over all radial orderings of heterotic vertices on the complex plane representing string world-sheet.Comment: 28 page

    An effectual template bank for the detection of gravitational waves from inspiralling compact binaries with generic spins

    Get PDF
    We report the construction of a three-dimensional template bank for the search for gravitational waves from inspiralling binaries consisting of spinning compact objects. The parameter space consists of two dimensions describing the mass parameters and one "reduced-spin" parameter, which describes the secular (non-precessing) spin effects in the waveform. The template placement is based on an efficient stochastic algorithm and makes use of the semi-analytical computation of a metric in the parameter space. We demonstrate that for "low-mass" (m1+m2â‰Č12 M⊙m_1 + m_2 \lesssim 12\,M_\odot) binaries, this template bank achieves effective fitting factors ∌0.92\sim0.92--0.990.99 towards signals from generic spinning binaries in the advanced detector era over the entire parameter space of interest (including binary neutron stars, binary black holes, and black hole-neutron star binaries). This provides a powerful and viable method for searching for gravitational waves from generic spinning low-mass compact binaries. Under the assumption that spin magnitudes of black-holes [neutron-stars] are uniformly distributed between 0--0.98 [0 -- 0.4] and spin angles are isotropically distributed, the expected improvement in the average detection volume (at a fixed signal-to-noise-ratio threshold) of a search using this reduced-spin bank is ∌20−52%\sim20-52\%, as compared to a search using a non-spinning bank.Comment: Minor changes, version appeared in Phys. Rev.

    On manifolds admitting the consistent Lagrangian formulation for higher spin fields

    Full text link
    We study a possibility of Lagrangian formulation for free higher spin bosonic totally symmetric tensor field on the background manifold characterizing by the arbitrary metric, vector and third rank tensor fields in framework of BRST approach. Assuming existence of massless and flat limits in the Lagrangian and using the most general form of the operators of constraints we show that the algebra generated by these operators will be closed only for constant curvature space with no nontrivial coupling to the third rank tensor and the strength of the vector fields. This result finally proves that the consistent Lagrangian formulation at the conditions under consideration is possible only in constant curvature Riemann space.Comment: 11 pages; v2: minor typos corrected, a reference adde

    D-branes and SQCD in Non-Critical Superstring Theory

    Full text link
    Using exact boundary conformal field theory methods we analyze the D-brane physics of a specific four-dimensional non-critical superstring theory which involves the N=2 SL(2)/U(1) Kazama-Suzuki model at level 1. Via the holographic duality of hep-th/9907178 our results are relevant for D-brane dynamics in the background of NS5-branes and D-brane dynamics near a conifold singularity. We pay special attention to a configuration of D3- and D5-branes that realizes N=1 supersymmetric QCD and discuss the massless spectrum and classical moduli of this setup in detail. We also comment briefly on the implications of this construction for the recently proposed generalization of the AdS/CFT correspondence by Klebanov and Maldacena within the setting of non-critical superstrings.Comment: harvmac, 47 pages, 6 figures; v4 same as v3 due to submission erro

    Gravity on Noncommutative D-Branes

    Get PDF
    The effective action for the low energy scattering of two gravitons with a D-brane in the presence of a constant antisytmetric BB field in bosonic string theory is calculated and the modification to the standard D-brane action to first order in αâ€Č\alpha' is obtained.Comment: 18 pages, Latex file, accepted in Int. J. Mod. Phys.

    Non-critical holography and four-dimensional CFT's with fundamentals

    Full text link
    We find non-critical string backgrounds in five and eight dimensions, holographically related to four-dimensional conformal field theories with N=0 and N=1 supersymmetries. In the five-dimensional case we find an AdS_5 background metric for a string model related to non-supersymmetric, conformal QCD with large number of colors and flavors and discuss the conjectured existence of a conformal window from the point of view of our solution. In the eight-dimensional string theory, we build a family of solutions of the form AdS_5 x \tilde{S}^3 with \tilde{S}^3 a squashed three-sphere. For a special value of the ratio N_f/N_c, the background can be interpreted as the supersymmetric near-horizon limit of a system of color and flavor branes on R^{1,3} times a known four-dimensional generalization of the cigar. The N=1 dual theory with fundamental matter should have an IR fixed point only for a fixed ratio N_f/N_c. General features of the string/gauge theory correspondence for theories with fundamental flavors are also addressed.Comment: 38 pages, 3 figures; JHEP class. Minor corrections, references adde

    On gravitational couplings in D-brane action

    Full text link
    We compute the two closed string graviton - two open string scalar scattering amplitude on the disc to show that there is no second-derivative curvature - scalar coupling term R X^2 in the low-energy effective action of a D-brane in curved space in type II superstring theory.Comment: 15 pages, 1 figure, LaTex JHEP style; v2: reference added, typos corrected; v3: section 2 rewritten due to an error in gauge fixing, appendix added, conclusions unchange

    Modeling the Effects of Varying the Ti Concentration on the Mechanical Properties of Cu–Ti Alloys

    Get PDF
    The mechanical properties of CuTi alloys have been characterized extensively through experimental studies. However, a detailed understanding of why the strength of Cu increases after a small fraction of Ti atoms are added to the alloy is still missing. In this work, we address this question using density functional theory (DFT) and molecular dynamics (MD) simulations with the modified embedded atom method (MEAM) interatomic potentials. First, we performed calculations of the uniaxial tension deformations of small bicrystalline Cu cells using DFT static simulations. We then carried out uniaxial tension deformations on much larger bicrystalline and polycrystalline Cu cells by using MEAM MD simulations. In bicrystalline Cu, the inclusion of Ti increases the grain boundary separation energy and the maximum tensile stress. The DFT calculations demonstrate that the increase in the tensile stress can be attributed to an increase in the local charge density arising from Ti. MEAM simulations in larger bicrystalline systems have shown that increasing the Ti concentration decreases the density of the stacking faults. This observation is enhanced in polycrystalline Cu, where the addition of Ti atoms, even at concentrations as low as 1.5 atomic (at.) %, increases the yield strength and elastic modulus of the material compared to pure Cu. Under uniaxial tensile loading, the addition of small amounts of Ti hinders the formation of partial Shockley dislocations in the grain boundaries of Cu, leading to a reduced level of local deformation. These results shed light on the role of Ti in determining the mechanical properties of polycrystalline Cu and enable the engineering of grain boundaries and the inclusion of Ti to improve degradation resistance

    Exploring improved holographic theories for QCD: Part I

    Get PDF
    Various holographic approaches to QCD in five dimensions are explored using input both from the putative non-critical string theory as well as QCD. It is argued that a gravity theory in five dimensions coupled to a dilaton and an axion may capture the important qualitative features of pure QCD. A part of the higher alpha' corrections are resummed into a dilaton potential. The potential is shown to be in one-to-one correspondence with the exact beta-function of QCD, and its knowledge determines the full structure of the vacuum solution. The geometry near the UV boundary is that of AdS_5 with logarithmic corrections reflecting the asymptotic freedom of QCD. We find that all relevant confining backgrounds have an IR singularity of the "good" kind that allows unambiguous spectrum computations. Near the singularity the 't Hooft coupling is driven to infinity. Asymptotically linear glueball masses can also be achieved. The classification of all confining asymptotics, the associated glueball spectra and meson dynamics are addressed in a companion paper, ArXiv:0707.1349Comment: 37+23 pages, 11 figures. (v3) Some clarifications and typo corrections. Journal versio
    • 

    corecore