9 research outputs found

    Use of Clay Dispersed in Water for Decreasing Soil Water Repellency

    Get PDF
    In this study, we examined the efficiency of a kaolinite clayey soil to mitigate water repellency of a sandy soil with olive trees. The treatment was applied to the soil zone below the tree canopy, which displayed the highest degree of water repellency [average water drop penetration time (WDPT) value = 820 s]. Both dry (incorporated onto the top soil) and wet clay applications (after dispersion in irrigation water) were examined in a replicated experiment, with control trees being used for comparison. The application rate of the clayey soil was maintained in both cases (wet and dry mode) equal to 1 kg m−2, while the effect of subsequent wetting and drying cycles on the treatment performance was evaluated. The results of the study verify that clay application was effective to mitigate soil water repellency. Dry supplementation displayed low efficiency (26% reduction of the air-dry WDPT compared with the control soil) within the first week of application. The efficiency of the dry-clay treatment increased to 76% after applying three subsequent wetting and drying cycles. In comparison with the dry mode, the wet clay was efficient immediately after application (74% reduction of the WDPT), indicating that the limiting step in the overall process was clay dispersion. Based on the findings of this study, it was proposed that wet clay application is of interest for controlling soil water repellency in agricultural land

    Assessment of Groundwater Vulnerability in the North Aquifer Area of Rhodes Island Using the GALDIT Method and GIS

    No full text
    Salinization of coastal aquifer systems constitutes a major threat for groundwater. Especially areas with high population density due to increasing tourist activity may face severe problems. In this study, the GALDIT method was applied in the north side of Rhodes Island, Greece, in order to assess groundwater vulnerability to seawater intrusion. Hydrogeological data were elaborated in geographical information systems (GIS), and appropriate thematic maps were produced. The final vulnerability map was obtained from the combination of the thematic maps using overlying techniques. Based on the application of the GALDIT method, a zone up to 1000 m from the shore is characterized by medium to high vulnerability, while medium vulnerability characterizes the eastern part of the study area. Overexploitation of the aquifer, due to the intense touristic activity in Ialysos area, constitutes the main reason for groundwater salinization due to seawater intrusion in the study area. Consequently, planning of proper groundwater management and systematic monitoring of the groundwater reserves are of the utmost importance in order to solve existing problems and prevent future issues of salinization

    Relating Hydro-Meteorological Variables to Water Table in an Unconfined Aquifer via Fuzzy Linear Regression

    No full text
    This study aims to assess the short-term response of groundwater to the main hydro-meteorological variables of drought in a coastal unconfined aquifer. For this purpose, a multiple fuzzy linear regression-based methodology is implemented in order to relate rainfall, streamflow and the potential evapotranspiration to groundwater. Fuzzy regression analysis is recommended when there is a lack of data. The uncertainty of the system is incorporated into the regression coefficients which, in this study, are considered to be fuzzy symmetrical triangular numbers. Two objective functions are used producing a fuzzy band in which all the observed data must be included. The first objective function, based on Tanaka’s model, minimizes the total width of the produced fuzzy band. The second one includes the first while additionally minimizing the distance between the central value of the fuzzy output of the model and the observed value. Validity of the model is checked through suitability measures. The present methodology is applied at the east part of the Nestos River Delta in the Prefecture of Xanthi (Greece), where the observed values of the depth of groundwater level of four wells are examined

    Relating Hydro-Meteorological Variables to Water Table in an Unconfined Aquifer via Fuzzy Linear Regression

    No full text
    This study aims to assess the short-term response of groundwater to the main hydro-meteorological variables of drought in a coastal unconfined aquifer. For this purpose, a multiple fuzzy linear regression-based methodology is implemented in order to relate rainfall, streamflow and the potential evapotranspiration to groundwater. Fuzzy regression analysis is recommended when there is a lack of data. The uncertainty of the system is incorporated into the regression coefficients which, in this study, are considered to be fuzzy symmetrical triangular numbers. Two objective functions are used producing a fuzzy band in which all the observed data must be included. The first objective function, based on Tanaka’s model, minimizes the total width of the produced fuzzy band. The second one includes the first while additionally minimizing the distance between the central value of the fuzzy output of the model and the observed value. Validity of the model is checked through suitability measures. The present methodology is applied at the east part of the Nestos River Delta in the Prefecture of Xanthi (Greece), where the observed values of the depth of groundwater level of four wells are examined

    Conceptual and Mathematical Modeling of a Coastal Aquifer in Eastern Delta of R. Nestos (N. Greece)

    No full text
    In this paper, the development of the conceptual and groundwater flow model for the coastal aquifer system of the alluvial plain of River Nestos (N. Greece), that suffers from seawater intrusion due to over-pumping for irrigation, is analyzed. The study area is a typical semi-arid hydrogeologic environment, composed of a multi-layer granular aquifers that covers the eastern coastal delta system of R. Nestos. This study demonstrates the results of a series of field measurements (such as geophysical surveys, hydrochemical and isotopical measurements, hydro-meteorological data, land use, irrigation schemes) that were conducted during the period 2009 to 2014. The synthesis of the above resulted in the development of the conceptual model for this aquifer system, that formed the basis for the application of the mathematical model for simulating groundwater flow. The mathematical modeling was achieved using the finite difference method after the application of the USGS code MODFLOW-2005

    Hybrid Fuzzy Multi-Criteria Analysis for Selecting Discrete Preferable Groundwater Recharge Sites

    No full text
    This study proposes a hybrid fuzzy multi-criteria methodology for the selection of the most preferable site for applying managed aquifer recharge (MAR) systems by utilizing floodwaters. The use of MAR can increase water resources for later water utilization in case of drought. In this multi-criteria problem, seven recharge sites are under consideration, based on nine criteria, aiming to make a final list of their relative ranking. A fuzzy analytic hierarchy process (FAHP) based on the logarithmic fuzzy preference programming (LFFP) method is used to determine the weights of criteria. LFFP is an optimization-based method that produces a priority vector from a fuzzy pairwise comparison matrix. Furthermore, fuzzy inference systems (FIS) based on the Mamdani approach are used to estimate the rating of each alternative with respect to the criterion examined, and then the final evaluation of the alternatives is obtained. A FIS is a fuzzy if–then rule-based system where the experts’ qualitative knowledge is translated into numerical reasoning for each individual criterion. The proposed methodology is applied in the aquifer system of the agricultural plain located to the southeast of the city of Xanthi in the Prefecture of Xanthi, NE Greece

    Hybrid Fuzzy Multi-Criteria Analysis for Selecting Discrete Preferable Groundwater Recharge Sites

    No full text
    This study proposes a hybrid fuzzy multi-criteria methodology for the selection of the most preferable site for applying managed aquifer recharge (MAR) systems by utilizing floodwaters. The use of MAR can increase water resources for later water utilization in case of drought. In this multi-criteria problem, seven recharge sites are under consideration, based on nine criteria, aiming to make a final list of their relative ranking. A fuzzy analytic hierarchy process (FAHP) based on the logarithmic fuzzy preference programming (LFFP) method is used to determine the weights of criteria. LFFP is an optimization-based method that produces a priority vector from a fuzzy pairwise comparison matrix. Furthermore, fuzzy inference systems (FIS) based on the Mamdani approach are used to estimate the rating of each alternative with respect to the criterion examined, and then the final evaluation of the alternatives is obtained. A FIS is a fuzzy if–then rule-based system where the experts’ qualitative knowledge is translated into numerical reasoning for each individual criterion. The proposed methodology is applied in the aquifer system of the agricultural plain located to the southeast of the city of Xanthi in the Prefecture of Xanthi, NE Greece

    Supporting Participatory Management Planning for Catchment Operationalization with Intuitionistic Fuzzy Sets—A Study in Laspias River, Thrace, Greece

    No full text
    Bottom-up management in a catchment scale is deemed the optimal way to avoid conflicts among water users through the participation of stakeholders, strategy co-shaping, and solutions co-creation. Water management cannot be one-dimensional; it demands cross sectoral cooperation. Usually, the difficulty lies in proper stakeholder training and inclusion of their opinions, which should be used in a quantifiable manner in water management. The Laspias River watershed occupies an area of 221.8 km2 that includes the River Basin District of Thrace; it is characterized by intense agricultural and industrial activity. To comply with the augmented water needs and pollution loads this research aims to utilize a hybrid intuitionistic fuzzy multi-criteria-based methodology to address respectfully stakeholders’ opinion, this research aims to utilize a hybrid intuitionistic fuzzy multi-criteria-based methodology. It is often difficult to manage planning water management measures as the problems include multiple (conflicting) criteria that are based on stakeholder’s opinions, which are usually imprecise and in a rather qualitative form. This study provides the mathematical tools to reach comprehensive decisions with the public involvement offering a practical solution in an existing problem, that is the proper inclusion of stakeholders’ opinion. The weights are produced based on a stakeholder’s opinion. The alternatives’ ranking is achieved based on the fuzzified intuitionistic version of the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), and a hierarchy of mitigation problems is achieved via this novel approach

    Use of olive mill wastewater (OMW) to decrease hydrophobicity in sandy soil

    No full text
    This study explores the potential effectiveness of olive mill wastewater (OMW) as an alternative to industrial surfactants in decreasing hydrophobicity in sandy soil. The OMW was obtained from a storage lagoon and characterized by high concentrations of short-chain fatty acids, mainly butyric, propionic and acetic, which contributed approximately to 1/3 of the wastewater organic load. It was applied diluted with freshwater (1:1) in an agricultural field in Greece affected by water repellency at a rate of 4 L/m2. OMW was found to be effective in decreasing soil water repellency, which suggests the potential of OMW to be used as a natural surfactant. The decrease in hydrophobicity was attributed to the fatty-acid related surface-active properties, enabling rapid penetration of OMW into the soil matrix, and the consequent enhancement of soil microbial activity that enables degradation of soil hydrophobic compounds
    corecore