66 research outputs found

    Long-term global distribution of earth's shortwave radiation budget at the top of atmosphere

    No full text
    International audienceThe mean monthly shortwave (SW) radiation budget at the top of atmosphere (TOA) was computed on 2.5° longitude-latitude resolution for the 14-year period from 1984 to 1997, using a radiative transfer model with long-term climatological data from the International Satellite Cloud Climatology Project (ISCCP-D2) supplemented by data from the National Centers for Environmental Prediction ? National Center for Atmospheric Research (NCEP-NCAR) Global Reanalysis project, and other global data bases such as TIROS Operational Vertical Sounder (TOVS) and Global Aerosol Data Set (GADS). The model radiative fluxes at TOA were validated against Earth Radiation Budget Experiment (ERBE) S4 scanner satellite data (1985?1989). The model is able to predict the seasonal and geographical variation of SW TOA fluxes. On a mean annual and global basis, the model is in very good agreement with ERBE, overestimating the outgoing SW radiation at TOA (OSR) by 0.93 Wm-2 (or by 0.92%), within the ERBE uncertainties. At pixel level, the OSR differences between model and ERBE are mostly within ±10 Wm-2, with ±5 Wm-2 over extended regions, while there exist some geographic areas with differences of up to 40 Wm-2, associated with uncertainties in cloud properties and surface albedo. The 14-year average model results give a planetary albedo equal to 29.6% and a TOA OSR flux of 101.2 Wm-2. A significant linearly decreasing trend in OSR and planetary albedo was found, equal to 2.3 Wm-2 and 0.6% (in absolute values), respectively, over the 14-year period (from January 1984 to December 1997), indicating an increasing solar planetary warming. This planetary SW radiative heating occurs in the tropical and sub-tropical areas (20° S?20° N), with clouds being the most likely cause. The computed global mean OSR anomaly ranges within ±4 Wm-2, with signals from El Niño and La Niña events or Pinatubo eruption, whereas significant negative OSR anomalies, starting from year 1992, are also detected

    Analysis of the decrease in the tropical mean outgoing shortwave radiation at the top of atmosphere for the period 1984-2000

    No full text
    International audienceA decadal-scale trend in the tropical radiative energy budget has been observed recently by satellites, which however is not reproduced by climate models. In the present study, we have computed the outgoing shortwave radiation (OSR) at the top of atmosphere (TOA) at 2.5° longitude-latitude resolution and on a mean monthly basis for the 17-year period 1984-2000, by using a deterministic solar radiative transfer model and cloud climatological data from the International Satellite Cloud Climatology Project (ISCCP) D2 database. Anomaly time series for the mean monthly pixel-level OSR fluxes, as well as for the key physical parameters, were constructed. A significant decreasing trend in OSR anomalies, starting mainly from the late 1980s, was found in tropical and subtropical regions (30° S-30° N), indicating a decadal increase in solar planetary heating equal to 1.9±0.3Wm-2/decade, reproducing well the features recorded by satellite observations, in contrast to climate model results. This increase in solar planetary heating, however, is accompanied by a similar increase in planetary cooling, due to increased outgoing longwave radiation, so that there is no change in net radiation. The model computed OSR trend is in good agreement with the corresponding linear decadal decrease of 2.5±0.4Wm-2/decade in tropical mean OSR anomalies derived from ERBE S-10N non-scanner data (edition 2). An attempt was made to identify the physical processes responsible for the decreasing trend in tropical mean OSR. A detailed correlation analysis using pixel-level anomalies of model computed OSR flux and ISCCP cloud cover over the entire tropical and subtropical region (30° S-30° N), gave a correlation coefficient of 0.79, indicating that decreasing cloud cover is the main reason for the tropical OSR trend. According to the ISCCP-D2 data derived from the combined visible/infrared (VIS/IR) analysis, the tropical cloud cover has decreased by 6.6±0.2% per decade, in relative terms. A detailed analysis of the inter-annual and long-term variability of the various parameters determining the OSR at TOA, has shown that the most important contribution to the observed OSR trend comes from a decrease in low-level cloud cover over the period 1984-2000, followed by decreases in middle and high-level cloud cover. Note, however, that there still remain some uncertainties associated with the existence and magnitude of trends in ISCCP-D2 cloud amounts. Opposite but small trends are introduced by increases in cloud scattering optical depth of low and middle clouds

    Global distribution of Earth's surface shortwave radiation budget

    No full text
    International audienceThe monthly mean shortwave (SW) radiation budget at the Earth's surface (SRB) was computed on 2.5-degree longitude-latitude resolution for the 17-year period from 1984 to 2000, using a radiative transfer model accounting for the key physical parameters that determine the surface SRB, and long-term climatological data from the International Satellite Cloud Climatology Project (ISCCP-D2). The model input data were supplemented by data from the National Centers for Environmental Prediction - National Center for Atmospheric Research (NCEP-NCAR) and European Center for Medium Range Weather Forecasts (ECMWF) Global Reanalysis projects, and other global data bases such as TIROS Operational Vertical Sounder (TOVS) and Global Aerosol Data Set (GADS). The model surface radiative fluxes were validated against surface measurements from 22 stations of the Baseline Surface Radiation Network (BSRN) covering the years 1992-2000, and from 700 stations of the Global Energy Balance Archive (GEBA), covering the period 1984-2000. The model is in good agreement with BSRN and GEBA, with a negative bias of 14 and 6.5 Wm-2, respectively. The model is able to reproduce interesting features of the seasonal and geographical variation of the surface SW fluxes at global scale. Based on the 17-year average model results, the global mean SW downward surface radiation (DSR) is equal to 171.6 Wm-2, whereas the net downward (or absorbed) surface SW radiation is equal to 149.4 Wm-2, values that correspond to 50.2 and 43.7% of the incoming SW radiation at the top of the Earth's atmosphere. These values involve a long-term surface albedo equal to 12.9%. Significant increasing trends in DSR and net DSR fluxes were found, equal to 4.1 and 3.7 Wm-2, respectively, over the 1984-2000 period (equivalent to 2.4 and 2.2 Wm-2 per decade), indicating an increasing surface solar radiative heating. This surface SW radiative heating is primarily attributed to clouds, especially low-level, and secondarily to other parameters such as total precipitable water. The surface solar heating occurs mainly in the period starting from the early 1990s, in contrast to decreasing trend in DSR through the late 1980s. The computed global mean DSR and net DSR flux anomalies were found to range within ±8 and ±6 Wm-2, respectively, with signals from El Niño and La Niña events, and the Pinatubo eruption, whereas significant positive anomalies have occurred in the period 1992-2000

    ENSO surface longwave radiation forcing over the tropical Pacific

    No full text
    International audienceWe have studied the spatial and temporal variation of the surface longwave radiation (downwelling and net) over a 21-year period in the tropical and subtropical Pacific Ocean (40 S?40 N, 90 E?75 W). The fluxes were computed using a deterministic model for atmospheric radiation transfer, along with satellite data from the ISCCP-D2 database and reanalysis data from NCEP/NCAR (acronyms explained in main text), for the key atmospheric and surface input parameters. An excellent correlation was found between the downwelling longwave radiation (DLR) anomaly and the Niño-3.4 index time-series, over the Niño-3.4 region located in the central Pacific. A high anti-correlation was also found over the western Pacific (15?0 S, 105?130 E). There is convincing evidence that the time series of the mean downwelling longwave radiation anomaly in the western Pacific precedes that in the Niño-3.4 region by 3?4 months. Thus, the downwelling longwave radiation anomaly is a complementary index to the SST anomaly for the study of ENSO events and can be used to asses whether or not El Niño or La Niña conditions prevail. Over the Niño-3.4 region, the mean DLR anomaly values range from +20 Wm?2 during El Niño episodes to ?20 Wm?2 during La Niña events, while over the western Pacific (15?0 S, 105?130 E) these values range from ?15 Wm?2 to +10 Wm?2, respectively. The long- term average (1984?2004) distribution of the net surface longwave radiation to the surface over the tropical and subtropical Pacific for the three month period November-December-January shows a net thermal cooling of the ocean surface. When El Niño conditions prevail, the thermal radiative cooling in the central and south-eastern tropical Pacific becomes weaker by 10 Wm?2 south of the equator in the central Pacific (7?0 S, 160?120 W) for the three-month period of NDJ, because the DLR increase is larger than the increase in surface thermal emission. In contrast, the thermal radiative cooling over Indonesia is enhanced by 10 Wm?2 during the early (August?September?October) El Niño phase

    Analysis of the decrease in the tropical mean outgoing shortwave radiation at the top of atmosphere for the period 1984%ndash;2000

    No full text
    International audienceA decadal-scale trend in the tropical radiative energy budget has been observed recently by satellites, which however is not reproduced by climate models. In the present study, we have computed the outgoing shortwave radiation (OSR) at the top of atmosphere (TOA) at 2.5° longitude-latitude resolution and on a mean monthly basis for the 17-year period 1984?2000, by using a deterministic solar radiative transfer model and cloud climatological data from the International Satellite Cloud Climatology Project (ISCCP) D2 database. Atmospheric temperature and humidity vertical profiles, as well as other supplementary data, were taken from the National Centers for Environmental Prediction ? National Center for Atmospheric Research (NCEP/NCAR) and the European Center for Medium-Range Weather Forecasts (ECMWF) Global Reanalysis Projects, while other global databases, such as the Global Aerosol Data Set (GADS) for aerosol data, were also used. Anomaly time series for the mean monthly pixel-level OSR fluxes, as well as for the key physical parameters, were constructed. A significant decreasing trend in OSR anomalies, starting mainly from the late 1980s, was found in tropical and subtropical regions (30° S?30° N), indicating an increase in solar planetary heating equal to 3.2±0.5 Wm-2 over the 17-year time period from 1984 to 2000 or 1.9±0.3 Wm-2/decade, reproducing well the features recorded by satellite observations, in contrast to climate model results. The model computed trend is in good agreement with the corresponding linear decrease of 3.7±0.5 Wm-2 (or 2.5±0.4 Wm-2/decade) in tropical mean OSR anomalies derived from ERBE S-10N non-scanner data. An attempt was made to identify the physical processes responsible for the decreasing trend in tropical mean OSR. A detailed correlation analysis using pixel-level anomalies of OSR flux and ISCCP cloud cover over the entire tropical and subtropical region (30° S?30° N), gave a correlation coefficient of 0.79, indicating that decreasing cloud cover is the main reason for the tropical OSR trend. According to the ISCCP-D2 data derived from the combined visible/infrared (VIS/IR) analysis, the tropical cloud cover has decreased by 6.6±0.2% per decade, in relative terms. A detailed analysis of the inter-annual and long-term variability of the various parameters determining the OSR at TOA, has shown that the most important contribution to the observed OSR trend comes from a decrease in low-level cloud cover over the period 1984?2000, followed by decreases in middle and high-level cloud cover. Opposite but small trends are introduced by increases in cloud scattering optical depth of low and middle clouds

    Long-term global distribution of earth's shortwave radiation budget at the top of atmosphere

    Get PDF
    The mean monthly shortwave (SW) radiation budget at the top of atmosphere (TOA) was computed on 2.5&deg; longitude-latitude resolution for the 14-year period from 1984 to 1997, using a radiative transfer model with long-term climatological data from the International Satellite Cloud Climatology Project (ISCCP-D2) supplemented by data from the National Centers for Environmental Prediction &ndash; National Center for Atmospheric Research (NCEP-NCAR) Global Reanalysis project, and other global data bases such as TIROS Operational Vertical Sounder (TOVS) and Global Aerosol Data Set (GADS). The model radiative fluxes at TOA were validated against Earth Radiation Budget Experiment (ERBE) S4 scanner satellite data (1985&ndash;1989). The model is able to predict the seasonal and geographical variation of SW TOA fluxes. On a mean annual and global basis, the model is in very good agreement with ERBE, overestimating the outgoing SW radiation at TOA (OSR) by 0.93 Wm<sup>-2</sup> (or by 0.92%), within the ERBE uncertainties. At pixel level, the OSR differences between model and ERBE are mostly within &plusmn;10 Wm<sup>-2</sup>, with &plusmn;5 Wm<sup>-2</sup> over extended regions, while there exist some geographic areas with differences of up to 40 Wm<sup>-2</sup>, associated with uncertainties in cloud properties and surface albedo. The 14-year average model results give a planetary albedo equal to 29.6% and a TOA OSR flux of 101.2 Wm<sup>-2</sup>. A significant linearly decreasing trend in OSR and planetary albedo was found, equal to 2.3 Wm<sup>-2</sup> and 0.6% (in absolute values), respectively, over the 14-year period (from January 1984 to December 1997), indicating an increasing solar planetary warming. This planetary SW radiative heating occurs in the tropical and sub-tropical areas (20&deg; S&ndash;20&deg; N), with clouds being the most likely cause. The computed global mean OSR anomaly ranges within &plusmn;4 Wm<sup>-2</sup>, with signals from El Ni&#241;o and La Ni&#241;a events or Pinatubo eruption, whereas significant negative OSR anomalies, starting from year 1992, are also detected

    The direct effect of aerosols on solar radiation based on satellite observations, reanalysis datasets, and spectral aerosol optical properties from Global Aerosol Data Set (GADS)

    Get PDF
    International audienceA global estimate of the seasonal direct radiative effect (DRE) of natural plus anthropogenic aerosols on solar radiation under all-sky conditions is obtained by combining satellite measurements and reanalysis data with a spectral radiative transfer model and spectral aerosol optical properties taken from the Global Aerosol Data Set (GADS). The estimates are obtained with detailed spectral model computations separating the ultraviolet (UV), visible and near-infrared wavelengths. The global distribution of spectral aerosol optical properties was taken from GADS whereas data for clouds, water vapour, ozone, carbon dioxide, methane and surface albedo were taken from various satellite and reanalysis datasets. Using these aerosol properties and other related variables, we generate climatological (for the 12-year period 1984?1995) monthly mean aerosol DREs. The global annual mean DRE on the outgoing SW radiation at the top of atmosphere (TOA, ?FTOA) is ?1.62 W m?2 (with a range of ?15 to 10 W m?2, negative values corresponding to planetary cooling), the effect on the atmospheric absorption of SW radiation (?Fatmab) is 1.6 W m?2 (values up to 35 W m?2, corresponding to atmospheric warming), and the effect on the surface downward and absorbed SW radiation (?Fsurf, and ?Fsurfnet, respectively) is ?3.93 and ?3.22 W m?2 (values up to ?45 and ?35 W m?2, respectively, corresponding to surface cooling). According to our results, aerosols decrease/increase the planetary albedo by ?3 to 13% at the local scale, whereas on planetary scale the result is an increase of 1.5%. Aerosols can warm locally the atmosphere by up to 0.98 K day?1, whereas they can cool the Earth's surface by up to ?2.9 K day?1. Both these effects, which can significantly modify atmospheric dynamics and the hydrological cycle, can produce significant planetary cooling on a regional scale, although planetary warming can arise over highly reflecting surfaces. The aerosol DRE at the Earth's surface compared to TOA can be up to 15 times larger at the local scale. The largest aerosol DRE takes place in the northern hemisphere both at the surface and the atmosphere, arising mainly at ultraviolet and visible wavelengths

    Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers

    Get PDF
    Pulse generation often requires a stabilized cavity and its corresponding mode structure for initial phase-locking. Contrastingly, modeless cavity-free random lasers provide new possibilities for high quantum efficiency lasing that could potentially be widely tunable spectrally and temporally. Pulse generation in random lasers, however, has remained elusive since the discovery of modeless gain lasing. Here we report coherent pulse generation with modeless random lasers based on the unique polarization selectivity and broadband saturable absorption of monolayer graphene. Simultaneous temporal compression of cavity-free pulses are observed with such a polarization modulation, along with a broadly-tunable pulsewidth across two orders of magnitude down to 900 ps, a broadly-tunable repetition rate across three orders of magnitude up to 3 MHz, and a singly-polarized pulse train at 41 dB extinction ratio, about an order of magnitude larger than conventional pulsed fiber lasers. Moreover, our graphene-based pulse formation also demonstrates robust pulse-to-pulse stability and widewavelength operation due to the cavity-less feature. Such a graphene-based architecture not only provides a tunable pulsed random laser for fiber-optic sensing, speckle-free imaging, and laser-material processing, but also a new way for the non-random CW fiber lasers to generate widely tunable and singly-polarized pulses
    • …
    corecore