108 research outputs found

    New transitions and feeding of the J\u3csup\u3eπ\u3c/sup\u3e=(8\u3csup\u3e+\u3c/sup\u3e) isomer in \u3csup\u3e186\u3c/sup\u3eRe

    Get PDF
    The spallation neutron source at the Los Alamos Neutron Science Center Weapons Neutron Research facility was used to populate excited states in 186Re via (n,2nγ) reactions on an enriched 187Re target. Gamma rays were detected with the GErmanium Array for Neutron Induced Excitations spectrometer, a Compton-suppressed array of 18 HPGe detectors. Incident neutron energies were determined by the time-of-flight technique and used to obtain γ-ray excitation functions for the purpose of identifying γ rays by reaction channel. Analysis of the singles γ-ray spectrum gated on the neutron energy range 10≤En≤25MeV resulted in five transitions and one level added to the 186Re level scheme. The additions include the placement of three γ rays at 266.7, 381.2, and 647.7 keV which have been identified as feeding the 2.0×105yr, Jπ=(8+) isomer and yield an improved value of 148.2(5)keV for the isomer energy. These transitions may have astrophysical implications related to the use of the Re-Os cosmochronometer. Abstract © APS

    Projected shell model study of odd-odd f-p-g shell proton-rich nuclei

    Full text link
    A systematic study of 2-quasiparticle bands of the proton-rich odd-odd nuclei in the mass A ~ 70-80 region is performed using the projected shell model approach. The study includes Br-, Rb-, and Y-isotopes with N = Z+2, and Z+4. We describe the energy spectra and electromagnetic transition strengths in terms of the configuration mixing of the angular-momentum projected multi-quasiparticle states. Signature splitting and signature inversion in the rotational bands are discussed and are shown to be well described. A preliminary study of the odd-odd N = Z nucleus, 74Rb using the concept of spontaneous symmetry breaking is also presented.Comment: 14 pages, 7 figures, final version accepted by Phys. Rev.

    Intruder bands and configuration mixing in the lead isotopes

    Full text link
    A three-configuration mixing calculation is performed in the context of the interacting boson model with the aim to describe recently observed collective bands built on low-lying 0+0^+ states in neutron-deficient lead isotopes. The configurations that are included correspond to the regular, spherical states as well as two-particle two-hole and four-particle four-hole excitations across the Z=82 shell gap.Comment: 20 pages, 4 figures, accepted by PRC, reference added for section 1 in this revised versio
    • …
    corecore