298 research outputs found

    Facility Location in Evolving Metrics

    Get PDF
    Understanding the dynamics of evolving social or infrastructure networks is a challenge in applied areas such as epidemiology, viral marketing, or urban planning. During the past decade, data has been collected on such networks but has yet to be fully analyzed. We propose to use information on the dynamics of the data to find stable partitions of the network into groups. For that purpose, we introduce a time-dependent, dynamic version of the facility location problem, that includes a switching cost when a client's assignment changes from one facility to another. This might provide a better representation of an evolving network, emphasizing the abrupt change of relationships between subjects rather than the continuous evolution of the underlying network. We show that in realistic examples this model yields indeed better fitting solutions than optimizing every snapshot independently. We present an O(lognT)O(\log nT)-approximation algorithm and a matching hardness result, where nn is the number of clients and TT the number of time steps. We also give an other algorithms with approximation ratio O(lognT)O(\log nT) for the variant where one pays at each time step (leasing) for each open facility

    Combinatorial Auctions without Money

    Get PDF
    Algorithmic Mechanism Design attempts to marry computation and incentives, mainly by leveraging monetary transfers between designer and selfish agents involved. This is principally because in absence of money, very little can be done to enforce truthfulness. However, in certain applications, money is unavailable, morally unacceptable or might simply be at odds with the objective of the mechanism. For example, in Combinatorial Auctions (CAs), the paradigmatic problem of the area, we aim at solutions of maximum social welfare, but still charge the society to ensure truthfulness. We focus on the design of incentive-compatible CAs without money in the general setting of k-minded bidders. We trade monetary transfers with the observation that the mechanism can detect certain lies of the bidders: i.e., we study truthful CAs with verification and without money. In this setting, we characterize the class of truthful mechanisms and give a host of upper and lower bounds on the approximation ratio obtained by either deterministic or randomized truthful mechanisms. Our results provide an almost complete picture of truthfully approximating CAs in this general setting with multi-dimensional bidders

    Dynamics of ripple formation on silicon surfaces by ultrashort laser pulses in sub-ablation conditions

    Full text link
    An investigation of ultrashort pulsed laser induced surface modification due to conditions that result in a superheated melted liquid layer and material evaporation are considered. To describe the surface modification occurring after cooling and resolidification of the melted layer and understand the underlying physical fundamental mechanisms, a unified model is presented to account for crater and subwavelength ripple formation based on a synergy of electron excitation and capillary waves solidification. The proposed theoretical framework aims to address the laser-material interaction in sub-ablation conditions and thus minimal mass removal in combination with a hydrodynamics-based scenario of the crater creation and ripple formation following surface irradiation with single and multiple pulses, respectively. The development of the periodic structures is attributed to the interference of the incident wave with a surface plasmon wave. Details of the surface morphology attained are elaborated as a function of the imposed conditions and results are tested against experimental data

    Bottleneck Routing Games with Low Price of Anarchy

    Full text link
    We study {\em bottleneck routing games} where the social cost is determined by the worst congestion on any edge in the network. In the literature, bottleneck games assume player utility costs determined by the worst congested edge in their paths. However, the Nash equilibria of such games are inefficient since the price of anarchy can be very high and proportional to the size of the network. In order to obtain smaller price of anarchy we introduce {\em exponential bottleneck games} where the utility costs of the players are exponential functions of their congestions. We find that exponential bottleneck games are very efficient and give a poly-log bound on the price of anarchy: O(logLlogE)O(\log L \cdot \log |E|), where LL is the largest path length in the players' strategy sets and EE is the set of edges in the graph. By adjusting the exponential utility costs with a logarithm we obtain games whose player costs are almost identical to those in regular bottleneck games, and at the same time have the good price of anarchy of exponential games.Comment: 12 page
    corecore