12,034 research outputs found
Conductivity of Paired Composite Fermions
We develop a phenomenological description of the nu=5/2 quantum Hall state in
which the Halperin-Lee-Read theory of the half-filled Landau level is combined
with a p-wave pairing interaction between composite fermions (CFs). The
electromagnetic response functions for the resulting mean-field superconducting
state of the CFs are calculated and used in an RPA calculation of the q and
omega dependent longitudinal conductivity of the physical electrons, a quantity
which can be measured experimentally
Universality of collapsing two-dimensional self-avoiding trails
Results of a numerically exact transfer matrix calculation for the model of
Interacting Self-Avoiding Trails are presented. The results lead to the
conclusion that, at the collapse transition, Self-Avoiding Trails are in the
same universality class as the O(n=0) model of Blote and Nienhuis (or
vertex-interacting self-avoiding walk), which has thermal exponent ,
contrary to previous conjectures.Comment: Final version, accepted for publication in Journal of Physics A; 9
pages; 3 figure
First-principles study of adsorption, diffusion, and charge stability of metal adatoms on alkali halide surfaces
In this work we have performed first-principles calculations based on the spin-polarized density-functional theory for the adsorption and diffusion of Au, Ag, and Pb atoms on NaCl(001), KCl(001), and KBr(001) surfaces. We consider also the influence of adatom charge on the adsorption and diffusion. In order to characterize the different systems we explicitly calculate charge transfer between surface and adatom and consider the relative stability of the various charge states. Our results show that in general, apart from positively charged systems, the adatoms are weakly bound to the surface via orbital polarization and ionic interactions, and relatively little charge transfer occurs. Au and Ag adatoms are highly mobile on all surfaces, although they can be pinned by removal of an electron. In contrast, Pb adatoms are fairly immobile, and their mobility increases upon charging. Analysis of the charge stability suggests that Ag offers the potential of charge controlled mobility on insulators.Peer reviewe
Surface critical behaviour of the Interacting Self-Avoiding Trail on the square lattice
The surface critical behaviour of the interacting self-avoiding trail is
examined using transfer matrix methods coupled with finite-size scaling.
Particular attention is paid to the critical exponents at the ordinary and
special points along the collapse transition line. The phase diagram is also
presented.Comment: Journal of Physics A (accepted
String amplitudes in arbitrary dimensions
We calculate gravitational dressed tachyon correlators in non critcal
dimensions. The 2D gravity part of our theory is constrained to constant
curvature. Then scaling dimensions of gravitational dressed vertex operators
are equal to their bare conformal dimensions. Considering the model as d+2
dimensional critical string we calculate poles of generalized Shapiro-Virasoro
amplitudes.Comment: 14 page
The so-called dry laser cleaning governed by humidity at the nanometer scale
Illumination with single nanosecond pulses leads to the detachment of silica particles with 250nm radii from siliconsurfaces. We identify two laser-energy dependent cleaning regimes by time-of-flight particle-scattering diagnostics. For the higher energies, the ejection of particles is produced by nanoscale ablation due to the laser field enhancement at the particle-surface interface. The damage-free regime at lower energy is shown to be governed by the residual water molecules, which are inevitably trapped on the materials. We discuss the great importance that the humidity plays on the cleaning force and on the adhesion in the experiments.Peer reviewe
Einstein gravity as a 3D conformally invariant theory
We give an alternative description of the physical content of general
relativity that does not require a Lorentz invariant spacetime. Instead, we
find that gravity admits a dual description in terms of a theory where local
size is irrelevant. The dual theory is invariant under foliation preserving
3-diffeomorphisms and 3D conformal transformations that preserve the 3-volume
(for the spatially compact case). Locally, this symmetry is identical to that
of Horava-Lifshitz gravity in the high energy limit but our theory is
equivalent to Einstein gravity. Specifically, we find that the solutions of
general relativity, in a gauge where the spatial hypersurfaces have constant
mean extrinsic curvature, can be mapped to solutions of a particular gauge
fixing of the dual theory. Moreover, this duality is not accidental. We provide
a general geometric picture for our procedure that allows us to trade foliation
invariance for conformal invariance. The dual theory provides a new proposal
for the theory space of quantum gravity.Comment: 27 pages. Published version (minor changes and corrections
Vortex jamming in superconductors and granular rheology
We demonstrate that a highly frustrated anisotropic Josephson junction
array(JJA) on a square lattice exhibits a zero-temperature jamming transition,
which shares much in common with those in granular systems. Anisotropy of the
Josephson couplings along the horizontal and vertical directions plays roles
similar to normal load or density in granular systems. We studied numerically
static and dynamic response of the system against shear, i. e. injection of
external electric current at zero temperature. Current-voltage curves at
various strength of the anisotropy exhibit universal scaling features around
the jamming point much as do the flow curves in granular rheology, shear-stress
vs shear-rate. It turns out that at zero temperature the jamming transition
occurs right at the isotropic coupling and anisotropic JJA behaves as an exotic
fragile vortex matter : it behaves as superconductor (vortex glass) into one
direction while normal conductor (vortex liquid) into the other direction even
at zero temperature. Furthermore we find a variant of the theoretical model for
the anisotropic JJA quantitatively reproduces universal master flow-curves of
the granular systems. Our results suggest an unexpected common paradigm
stretching over seemingly unrelated fields - the rheology of soft materials and
superconductivity.Comment: 10 pages, 5 figures. To appear in New Journal of Physic
Sheared bioconvection in a horizontal tube
The recent interest in using microorganisms for biofuels is motivation enough
to study bioconvection and cell dispersion in tubes subject to imposed flow. To
optimize light and nutrient uptake, many microorganisms swim in directions
biased by environmental cues (e.g. phototaxis in algae and chemotaxis in
bacteria). Such taxes inevitably lead to accumulations of cells, which, as many
microorganisms have a density different to the fluid, can induce hydrodynamic
instabilites. The large-scale fluid flow and spectacular patterns that arise
are termed bioconvection. However, the extent to which bioconvection is
affected or suppressed by an imposed fluid flow, and how bioconvection
influences the mean flow profile and cell transport are open questions. This
experimental study is the first to address these issues by quantifying the
patterns due to suspensions of the gravitactic and gyrotactic green
biflagellate alga Chlamydomonas in horizontal tubes subject to an imposed flow.
With no flow, the dependence of the dominant pattern wavelength at pattern
onset on cell concentration is established for three different tube diameters.
For small imposed flows, the vertical plumes of cells are observed merely to
bow in the direction of flow. For sufficiently high flow rates, the plumes
progressively fragment into piecewise linear diagonal plumes, unexpectedly
inclined at constant angles and translating at fixed speeds. The pattern
wavelength generally grows with flow rate, with transitions at critical rates
that depend on concentration. Even at high imposed flow rates, bioconvection is
not wholly suppressed and perturbs the flow field.Comment: 19 pages, 9 figures, published version available at
http://iopscience.iop.org/1478-3975/7/4/04600
- …